OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 810–819

Spatially filtered wave-front sensor for high-order adaptive optics

Lisa A. Poyneer and Bruce Macintosh  »View Author Affiliations

JOSA A, Vol. 21, Issue 5, pp. 810-819 (2004)

View Full Text Article

Acrobat PDF (443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optics (AO) systems take sampled measurements of the wave-front phase. Because in the general case the spatial-frequency content of the phase aberration is not band limited, aliasing will occur. This aliasing will cause increased residual error and increased scattered light in the point-spread function (PSF). The spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane before the wave-front sensor. This stop acts as a low-pass filter on the phase, significantly reducing the high-spatial-frequency content phase seen by the wave-front sensor at moderate to high Strehl ratios. We study the properties and performance of the SFWFS for open- and closed-loop correction of atmospheric turbulence, segmented-primary-mirror errors, and sensing with broadband light. In closed loop the filter reduces high-spatial-frequency phase power by a factor of 103 to 108. In a full AO-system simulation, this translates to a reduction by up to 625 times in the residual error power due to aliasing over a specific spatial frequency range. The final PSF (generated with apodization of the pupil) has up to a 100 times reduction in intensity out to λ/2d.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Lisa A. Poyneer and Bruce Macintosh, "Spatially filtered wave-front sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21, 810-819 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998).
  2. A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, N.J., 1997).
  3. F. Rigaut, J.-P. Veran, and O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini and R. K. Tyson, eds., Proc. SPIE 3353, 1038–1048 (1998).
  4. A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
  5. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, and J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
  6. B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, and J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE 5170, 272–282 (2003).
  7. B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, and J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, and M. C. Roggemann, eds., Proc. SPIE 4494, 60–68 (2002).
  8. M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, and J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz and R. G. Lyon, eds., Proc. SPIE 4860, 149–160 (2003).
  9. C. B. Hogge, R. R. Butts, and M. Birlakoff, “Characteristics of phase-aberrated nondiffraction-limited laser beams,” Appl. Opt. 13, 1065–1070 (1974).
  10. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1989).
  11. L. A. Poyneer, M. Troy, B. Macintosh, and D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
  12. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE 2200, 372–383 (1994).
  13. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
  14. G. Chanan, C. O’Hara, and M. Troy, “Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm,” Appl. Opt. 39, 4706–4714 (2000).
  15. M. Troy, personal communication (mtroy@jpl.nasa.gov, Jet Propulsion Lab, Pasadena, California, 2003).
  16. C. Carrano, personal communication (cjc@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, 2003).
  17. A. Give’on and J. Kasdin, personal communication (agiveon@princeton.edu, Princeton University, Princeton, New Jersey, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited