OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 913–925

First- and second-order information in natural images: a filter-based approach to image statistics

Aaron P. Johnson and Curtis L. Baker, Jr.  »View Author Affiliations

JOSA A, Vol. 21, Issue 6, pp. 913-925 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previous analyses of natural image statistics have dealt mainly with their Fourier power spectra. Here we explore image statistics by examining responses to biologically motivated filters that are spatially localized and respond to first-order (luminance-defined) and second-order (contrast- or texture-defined) characteristics. We compare the distribution of natural image responses across filter parameters for first- and second-order information. We find that second-order information in natural scenes shows the same self-similarity previously described for first-order information but has substantially less orientational anisotropy. The magnitudes of the two kinds of information, as well as their mutual unsigned correlation, are much stronger for particular combinations of filter parameters in natural images but not in unstructured fractal images having the same power spectra.

© 2004 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.6110) Vision, color, and visual optics : Spatial filtering

Original Manuscript: August 1, 2003
Revised Manuscript: January 8, 2004
Manuscript Accepted: January 8, 2004
Published: June 1, 2004

Aaron P. Johnson and Curtis L. Baker, "First- and second-order information in natural images: a filter-based approach to image statistics," J. Opt. Soc. Am. A 21, 913-925 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Field, “Relations between the statistics of natural images and the response profiles of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  2. D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992). [CrossRef] [PubMed]
  3. A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996). [CrossRef] [PubMed]
  4. D. J. Field, N. Brady, “Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3384 (1997). [CrossRef]
  5. D. J. Field, “What is the goal of sensory coding,” Neural Comput. 6, 559–601 (1994). [CrossRef]
  6. R. J. Baddeley, “Searching for filters with ‘interesting’ output distributions: an uninteresting direction to explore?” Network 7, 409–421 (1996). [CrossRef] [PubMed]
  7. A. J. Schofield, “What does second-order vision see in an image?” Perception 29, 1071–1086 (2000). An additional figure is available at http://www.perceptionweb.com/perc0900/schofield.html . [CrossRef]
  8. O. Schwartz, E. P. Simoncelli, “Natural signal statistics and sensory gain control,” Nat. Neurosci. 4, 819–825 (2001). [CrossRef] [PubMed]
  9. D. L. Ringach, “Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex,” J. Neurophysiol. 88, 455–463 (2002). [PubMed]
  10. E. P. Simoncelli, B. A. Olshausen, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001). [CrossRef] [PubMed]
  11. A. Pentland, “Fractal-based description of natural scenes,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 661–674 (1984). [CrossRef]
  12. D. L. Ruderman, “Origins of scaling in natural images,” Vision Res. 37, 3385–3398 (1997). [CrossRef]
  13. M. G. A. Thomsom, “Beats, kurtosis and visual coding,” Network 12, 271–287 (2001). [CrossRef]
  14. D. L. Ruderman, “The statistics of natural images,” Network 5, 517–548 (1994). [CrossRef]
  15. A. J. Bell, T. J. Sejnowski, “The ‘independent components’ of natural scenes are edge filters,” Vision Res. 37, 3327–3338 (1997). [CrossRef]
  16. B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature (London) 381, 607–609 (1996). [CrossRef]
  17. J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 2315–2320 (1998). [CrossRef]
  18. A. Hyvärinen, P. O. Hoyer, “A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images,” Vision Res. 41, 2413–2423 (2001). [CrossRef] [PubMed]
  19. B. A. Olshausen, D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311–3325 (1996). [CrossRef]
  20. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  21. F. W. Campbell, G. F. Cooper, C. Enroth-Cugell, “The spatial selectivity of the visual cells of the cat,” J. Physiol. (London) 203, 223–235 (1969).
  22. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982). [CrossRef] [PubMed]
  23. L. A. Palmer, T. L. Davis, “Receptive-field structure in cat striate cortex,” J. Neurophysiol. 46, 260–276 (1981). [PubMed]
  24. D. L. Ringach, M. J. Hawkin, R. Shapley, “Dynamics of orientation tuning in primary visual cortex,” Nature (London) 387, 281–284 (1997). [CrossRef]
  25. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  26. C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  27. J. G. Daugman, “Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160–1169 (1985). [CrossRef] [PubMed]
  28. D. J. Field, D. J. Tolhurst, “The structure and symmetry of simple cell receptive-field profiles in the cat’s visual cortex,” Proc. R. Soc. London Ser. B 228, 379–400 (1986). [CrossRef]
  29. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  30. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989). [CrossRef] [PubMed]
  31. A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature tracking,” Vision Res. 39, 1465–1475 (1999). [CrossRef] [PubMed]
  32. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994). [CrossRef] [PubMed]
  33. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995). [CrossRef] [PubMed]
  34. A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997). [CrossRef] [PubMed]
  35. A. J. Schofield, M. A. Georgeson, “Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour,” Vision Res. 39, 2697–2716 (1999). [CrossRef] [PubMed]
  36. L. M. Vaina, A. Cowey, D. K. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999). [CrossRef] [PubMed]
  37. A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994). [CrossRef]
  38. S. O. Dumoulin, C. L. Baker, R. F. Hess, A. C. Evans, “Cortical specialization for processing first- and second-order motion,” Cereb. Cortex 13, 1375–1385 (2003). [CrossRef] [PubMed]
  39. T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992). [CrossRef] [PubMed]
  40. A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1997). [CrossRef]
  41. C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999). [CrossRef] [PubMed]
  42. C. Chubb, M. S. Landy, “Orthogonal distribution analysis: a new approach to the study of texture perception,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 291–301.
  43. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992). [CrossRef]
  44. M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991). [CrossRef] [PubMed]
  45. M. S. Landy, N. Graham, “Visual perception of texture,” in The Visual Neurosciences, L. M. Chalupa, J. S. Werner, eds. (MIT Press, Cambridge, Mass., 2003), pp. 1106–1118.
  46. N. Prins, F. A. A. Kingdom, “Detection and discrimination of texture modulations defined by orientation, spatial frequency, and contrast,” J. Opt. Soc. Am. A 20, 401–410 (2003). [CrossRef]
  47. C. L. Baker, I. Mareschal, “Processing of second-order stimuli in the visual cortex,” in Vision: From Neurons to Cognition, Progress in Brain Research, C. Casanova, M. Ptito, eds. (Elsevier Science, Amsterdam, 2001), Vol. 134, Chap. 12.
  48. N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993). [CrossRef] [PubMed]
  49. F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1489 (1999). [CrossRef] [PubMed]
  50. N. Graham, S. Wolfson, “A note about preferred orientations at the first and second stages of complex (second-order) texture channels,” J. Opt. Soc. Am. A 18, 2273–2281 (2001). [CrossRef]
  51. S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000). [CrossRef] [PubMed]
  52. J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994). [CrossRef] [PubMed]
  53. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998). [CrossRef] [PubMed]
  54. Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope responses in Area 17 and 18 of the cat,” J. Neurophysiol. 75, 1038–1050 (1996). [PubMed]
  55. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2001), pp. 199–205.
  56. I. Mareschal, C. L. Baker, “Cortical processing of second order motion,” Visual Neurosci. 16, 527–540 (1999). [CrossRef]
  57. K. V. Marida, Statistics of Directional Data (Academic, London, 1972).
  58. I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat A18,” J. Neurophysiol. 80, 2811–2823 (1998). [PubMed]
  59. D. C. Knill, D. J. Field, D. Kersten, “Human discrimination of fractal images,” J. Opt. Soc. Am. A 7, 1113–1123 (1990). [CrossRef] [PubMed]
  60. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the 2nd-order statistics of natural and synthetic-images,” Vision Res. 34, 541–554 (1994). [CrossRef] [PubMed]
  61. S. J. M. Rainville, F. A. A. Kingdom, “Spatial-scale contribution to the detection of mirror symmetry in fractal noise,” J. Opt. Soc. Am. A 16, 2112–2122 (1999). [CrossRef]
  62. R. J. Baddeley, P. J. B. Hancock, “A statistical analysis of natural images matches psychophysically derived orientation tuning curves,” Proc. R. Soc. London Ser. B 246, 219–223 (1991). [CrossRef]
  63. E. A. Essock, J. K. DeFord, B. C. Hansen, M. J. Sinai, “Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect,” Vision Res. 43, 1329–1335 (2003). [CrossRef] [PubMed]
  64. C. S. Furmanski, S. A. Engel, “An oblique effect in human primary visual cortex,” Nat. Neurosci. 3, 535–536 (2000). [CrossRef] [PubMed]
  65. D. Schluppeck, S. A. Engel, “Oblique effect in human MT+ follows pattern rather than component motion,” J. Vision 3, Abstract 282, p. 282a (2003).
  66. B. W. Li, M. R. Peterson, R. D. Freeman, “The oblique effect: a neural basis in the visual cortex,” J. Neurophysiol. 90, 204–217 (2003). [CrossRef] [PubMed]
  67. H. B. Barlow, D. J. Tolhurst, “Why do you have edge detectors?” in OSA Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 172.
  68. J. P. Jones, L. A. Palmer, “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1233–1258 (1987). [PubMed]
  69. J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1187–1211 (1987). [PubMed]
  70. D. J. Tolhurst, I. D. Thompson, “On the variety of spatial frequency selectivity shown by neurons in area 17 of the cat,” Proc. R. Soc. London Ser. B 213, 183–199 (1981). [CrossRef]
  71. D. B. Hamilton, D. G. Albrecht, W. S. Geisler, “Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function,” Vision Res. 29, 1285–1308 (1989). [CrossRef] [PubMed]
  72. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995). [CrossRef] [PubMed]
  73. N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000). [CrossRef] [PubMed]
  74. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 271–294 (1992).
  75. A. G. Leventhal, Y. Wang, M. T. Schmolesky, Y. Zhou, “Neural correlates of boundary perception,” Visual Neurosci. 15, 1107–1118 (1998). [CrossRef]
  76. I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited