OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 926–936

Comparison of real and computer-simulated outcomes of LASIK refractive surgery

Daniel Cano, Sergio Barbero, and Susana Marcos  »View Author Affiliations


JOSA A, Vol. 21, Issue 6, pp. 926-936 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000926


View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computer simulations of alternative LASIK ablation patterns were performed for corneal elevation maps of 13 real myopic corneas (range of myopia, -2.0 to -11.5 D). The computationally simulated ablation patterns were designed with biconic surfaces (standard Munnerlyn pattern, parabolic pattern, and biconic pattern) or with aberrometry measurements (customized pattern). Simulated results were compared with real postoperative outcomes. Standard LASIK refractive surgery for myopia increased corneal asphericity and spherical aberration. Computations with the theoretical Munnerlyn ablation pattern did not increase the corneal asphericity and spherical aberration. The theoretical parabolic pattern induced a slight increase of asphericity and spherical aberration, explaining only 40% of the clinically found increase. The theoretical biconic pattern controlled corneal spherical aberration. Computations showed that the theoretical customized pattern can correct high-order asymmetric aberrations. Simulations of changes in efficiency due to reflection and nonnormal incidence of the laser light showed a further increase in corneal asphericity. Consideration of these effects with a parabolic pattern accounts for 70% of the clinical increase in asphericity.

© 2004 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: August 4, 2003
Revised Manuscript: December 18, 2003
Manuscript Accepted: December 18, 2003
Published: June 1, 2004

Citation
Daniel Cano, Sergio Barbero, and Susana Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-6-926


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990). [CrossRef] [PubMed]
  2. S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998). [CrossRef] [PubMed]
  3. D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002). [CrossRef] [PubMed]
  4. S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  5. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).
  6. B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001). [CrossRef] [PubMed]
  7. G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, Cambridge, UK, 1997).
  8. J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999). [CrossRef] [PubMed]
  9. S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999). [CrossRef] [PubMed]
  10. J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.
  11. C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988). [CrossRef] [PubMed]
  12. J. Lin, “Critical review on refractive surgical lasers,” Opt. Eng. 34, 668–675 (1995). [CrossRef]
  13. J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).
  14. D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).
  15. F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002). [CrossRef] [PubMed]
  16. J. Schwiegerling, R. Snyder, “Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration,” J. Opt. Soc. Am. A 15, 2572–2579 (1998). [CrossRef]
  17. J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002). [CrossRef]
  18. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001). [CrossRef]
  19. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999). [CrossRef]
  20. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  21. S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002). [CrossRef] [PubMed]
  22. S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002). [PubMed]
  23. C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).
  24. M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).
  25. M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).
  26. R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001). [CrossRef]
  27. O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988). [CrossRef] [PubMed]
  28. C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985). [CrossRef] [PubMed]
  29. R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986). [CrossRef] [PubMed]
  30. T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995). [CrossRef] [PubMed]
  31. G. Pettit, M. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 35, 3386–3391 (1996). [CrossRef] [PubMed]
  32. P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994). [PubMed]
  33. D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited