OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 981–987

Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity

D. W. Peters, S. A. Kemme, and G. R. Hadley  »View Author Affiliations

JOSA A, Vol. 21, Issue 6, pp. 981-987 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (793 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant subwavelength gratings (RSGs) offer narrowband high reflectivity with low-reflectivity sidebands. Analysis with the commonly used rigorous coupled-wave analysis assumes an RSG with infinite lateral extent and illumination by plane waves. This analysis is performed with a finite-difference semivectorial high-order accurate two-dimensional Helmholtz code that is able to simulate the entire finite RSG structure in the dimension of the grating vector. We study the effect of finite beam size on RSG reflectivity, resonant wavelength, and spectral response width. Independently, we study the effect of a finite RSG by varying the waveguide length and number of grating periods while fixing the beam size. We show that the placement of the waveguide end facets relative to the termination of the grating has a significant effect on the reflectivity and response width.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.1950) Optical devices : Diffraction gratings
(260.1960) Physical optics : Diffraction theory
(260.5740) Physical optics : Resonance

Original Manuscript: December 9, 2003
Revised Manuscript: January 29, 2004
Manuscript Accepted: January 29, 2004
Published: June 1, 2004

D. W. Peters, S. A. Kemme, and G. R. Hadley, "Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity," J. Opt. Soc. Am. A 21, 981-987 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1464–1474 (1990). [CrossRef]
  2. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  3. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995). [CrossRef] [PubMed]
  4. D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  5. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997). [CrossRef]
  6. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249 (2000). [CrossRef]
  7. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001). [CrossRef]
  8. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989). [CrossRef]
  9. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  10. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18, 1912–1928 (2001). [CrossRef]
  11. M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000). [CrossRef]
  12. G. R. Hadley, “Low-truncation-error finite difference representations of the 2-D Helmholtz equation,” Int. J. Electron. Commun. (AEU) 52, 310–316 (1998).
  13. D. W. Peters, S. A. Kemme, G. R. Hadley, “Low-sideband resonant subwavelength grating array design,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 290–295.
  14. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  15. R. Magnusson, S. S. Wang, “Optical waveguide-grating filters,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 380–391 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited