OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 109–116

Calculation of the torque on dielectric elliptical cylinders

Carsten Rockstuhl and Hans Peter Herzig  »View Author Affiliations

JOSA A, Vol. 22, Issue 1, pp. 109-116 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present our investigation of the torque exerted on dielectric elliptical cylinders by highly focused laser beams. The calculations are performed with rigorous diffraction theory, and the size-dependent torque is analyzed as a function of the axis ratio. It is found that highly elongated particles will experience a reversal of the torque for a radius that is approximately one third of the wavelength. This effect is attributed to interference effects inside the structure due to multiple reflections of the incoming wave. The evolution from a perfectly sinusoidal angular dependence of the torque to a more complicated pattern for increasing particle size is presented in detail.

© 2005 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles

Original Manuscript: May 17, 2004
Revised Manuscript: July 20, 2004
Published: January 1, 2005

Carsten Rockstuhl and Hans Peter Herzig, "Calculation of the torque on dielectric elliptical cylinders," J. Opt. Soc. Am. A 22, 109-116 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003). [CrossRef]
  4. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997). [CrossRef] [PubMed]
  5. R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000). [CrossRef]
  6. Y. Harada, T. Asakura, “Radiation forces on a dielectric particle in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  7. S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser trapped particle,” Jpn. J. Appl. Phys., Part 1 33, L1725–L1727 (1994). [CrossRef]
  8. A. Rohrbach, E. L. Florin, E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 75–86 (2001). [CrossRef]
  9. P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984). [CrossRef]
  10. A. T. O’Neil, M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum with an optical spanner,” Opt. Commun. 185, 139–143 (2000). [CrossRef]
  11. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
  12. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003). [CrossRef]
  13. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003). [CrossRef]
  14. P. Galadja, P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003), http://www.opticsexpress.org . [CrossRef]
  15. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001). [CrossRef]
  16. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001). [CrossRef]
  17. T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001). [CrossRef]
  18. H. Polaert, G. Gréhan, G. Gousbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998). [CrossRef]
  19. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  20. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001). [CrossRef]
  21. C. Hafner, Post-Modern Electromagnetics (Wiley, New York, 1999).
  22. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  23. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  24. X. Wang, X.-B. Wang, P. R. C. Cascoyne, “General expressions for dielectrophoretic force and electrostational torque derived using the Maxwell stress tensor,” J. Opt. Commun. 39, 277–295 (1997).
  25. M. Lester, M. Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Lett. 24, 936–938 (1999). [CrossRef]
  26. C. Rockstuhl, H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004). [CrossRef]
  27. K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited