OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 142–147

Hysteresis correction in the curvature adaptive optics system

Qiang Yang, Christ Ftaclas, Mark Chun, and Douglas Toomey  »View Author Affiliations


JOSA A, Vol. 22, Issue 1, pp. 142-147 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000142


View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An enhancing Coleman–Hodgdon model is introduced to describe the hysteresis curves of the bimorph deformable mirror (DM). Hysteresis curves are measured from a bimorph DM and then experiment is set up for the correction of hysteresis. Finally, step response and transfer functions of a curvature adaptive optics (AO) system are compared in three cases: with DM hysteresis, without hysteresis, and with hysteresis but corrected. Simulation results show that the bandwidth of a curvature AO system is improved significantly under different loop gains after hysteresis of the DM is corrected.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(160.1050) Materials : Acousto-optical materials

History
Original Manuscript: June 8, 2004
Published: January 1, 2005

Citation
Qiang Yang, Christ Ftaclas, Mark Chun, and Douglas Toomey, "Hysteresis correction in the curvature adaptive optics system," J. Opt. Soc. Am. A 22, 142-147 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-1-142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 864–871 (1998). [CrossRef]
  2. P. Ge, M. Jouaneh, “Modeling hysteresis in piezoceramic actuators,” Precis. Eng. 17, 211–221 (1995). [CrossRef]
  3. J. M. Cruz-Hernandez, V. Hayward, “Phase control approach to hysteresis reduction,” IEEE Trans. Control Syst. Technol. 9, 100–109 (2001). [CrossRef]
  4. Y. Yu, N. Naganathan, R. Dukkipati, “Preisach modeling of hysteresis for piezoceramic actuator system,” Mech. Machine Theory 37, 49–59 (2002). [CrossRef]
  5. E. Klotins, K. Kundzins, A. R. Sternberg, V. Zauls, A. James, B. Andersen, “Modeling of trapped charge effects in ferroelectrics: application to piezoactuators,” in Optical Inorganic Dielectric Materials and Devices, A. Krumins, D. K. Millers, A. R. Sternberg, J. Spigulis, eds., Proc. SPIE2967, 138–143 (1997). [CrossRef]
  6. S. Jung, S. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuator by feed-forward model reference control,” Precis. Eng. 16, 49–55 (1994). [CrossRef]
  7. M. Goldfarb, N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Syst. Mag.March1997, pp. 69–79.
  8. K. Dirscherl, J. Garnas, L. Nielsen, “Modeling the hysteresis of a scanning probe microscope,” J. Vac. Sci. Technol. B 18, 621–625 (2000). [CrossRef]
  9. A. V. Kudryashov, V. I. Shamalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. (Bellingham) 35, 3064–3073 (1996). [CrossRef]
  10. E. M. Ellis, “Low-cost bimorph mirrors in adaptive optics,” Ph.D. dissertation (Imperial College of Science, Technology, and Medicine, University of London, London, 1999).
  11. R. M. Corless, D. J. Jeffrey, D. E. Knuth, “A sequence of series for the Lambert Wfunction,” in Proceedings of ISSAC ’97 (International Symposium on Symbolic and Algebraic Computation ’97), W. W. Küchlin, ed. (Association for Computing Machinery, New York, 1997), pp. 197–204.
  12. D. J. Jeffrey, D. E. G. Hare, R. M. Corless, “Unwinding the branches of the Lambert W function,” Math. Scientist 21, 1–7 (1996).
  13. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5, 329–359 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited