OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 177–184

Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation

Emil Hällstig, Torleif Martin, Lars Sjöqvist, and Mikael Lindgren  »View Author Affiliations

JOSA A, Vol. 22, Issue 1, pp. 177-184 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization properties of a nematic zero-twist liquid-crystal (NLC) spatial light modulator (SLM) were studied. A large ratio between the liquid-crystal (LC) layer thickness and the pixel pitch combined with spatial variations in the applied electric field causes fringing fields between pixels. Depending on the LC alignment, the electric field components within the LC layer can result in a twist deformation. The produced inhomogeneous optical anisotropy affects the polarization of light propagating through the device. We experimentally examined polarization effects in different diffraction orders for both binary and blazed phase gratings. Simulations of the LC deformation together with finite-difference time-domain simulations for the optical propagation were used to calculate the corresponding far-field intensities. It was demonstrated how rigorous simulations of the NLC SLM properties can be used to understand the polarization features of different diffraction orders.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.5080) Diffraction and gratings : Phase shift
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

Original Manuscript: April 23, 2004
Revised Manuscript: August 4, 2004
Published: January 1, 2005

Emil Hällstig, Mikael Lindgren, Torleif Martin, and Lars Sjöqvist, "Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation," J. Opt. Soc. Am. A 22, 177-184 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Efron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1995).
  2. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nquyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996). [CrossRef]
  3. S. Serati, J. Stockley, “Advanced liquid crystal on silicon optical phased arrays,” in Proceedings of the 2002 IEEE Aerospace Conference (IEEE Press, Piscataway, N.J., 2002), Vol. 3, pp. 1395–1402 (2002).
  4. J. Stockley, D. Subacius, S. Serati, “Influence of the interpixel region in liquid crystal diffraction gratings,” in Liquid Crystal Materials, Devices, and Applications VII, R. Shashidhar ed., Proc. SPIE3635, 127–136 (1999). [CrossRef]
  5. M. Bouvier, T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000). [CrossRef]
  6. G. Haas, H. Wöhler, M. Fritch, D. Mlynski, “Simulation of two-dimensional nematic director structures in inhomogeneous electric fields,” Mol. Cryst. Liq. Cryst. 198, 15–28 (1991). [CrossRef]
  7. Z. He, T. Nose, S. Sato, “Polarization properties of an amplitude nematic liquid crystal grating,” Opt. Eng. 37, 2885–2898 (1998). [CrossRef]
  8. Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys., Part 1 35, 3529–3530 (1996). [CrossRef]
  9. S. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” in Liquid Crystals VII, I.-C. Khoo, ed., Proc. SPIE5213, 26–39 (2003). [CrossRef]
  10. E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, M. Lindgren, “Fringing fields in a liquid-crystal spatial light modulator for beam steering,” J. Mod. Opt. 51, 1233–1247 (2004). [CrossRef]
  11. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford U. Press, Oxford, UK, 1993).
  12. H. Mori, E. C. Gartland, J. R. Reilly, P. J. Bois, “Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes,” Jpn. J. Appl. Phys., Part 1 38, 135–146 (1999). [CrossRef]
  13. B. Witzigmann, P. Regli, W. Fichtner, “Rigorous electromagnetic simulation of liquid-crystal displays,” J. Opt. Soc. Am. A 15, 753–757 (1998). [CrossRef]
  14. E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999). [CrossRef]
  15. E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000). [CrossRef]
  16. E. E. Kriezis, “Numerical modelling of light wave propagation in reflective liquid crystal microdisplay devices,” J. Mod. Opt. 49, 2065–2081 (2002). [CrossRef]
  17. C. Titus, J. Kelly, E. Gartland, S. Shiyanovskii, J. Anderson, P. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26, 1188–1190 (2001). [CrossRef]
  18. R. C. Jones, “New calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  19. D. Berreman, “Optics in stratified and anisotropic media: 4 × 4-Matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  20. A. Taflove, Computational Electrodynamics (Artech House, Norwood, Mass., 1995).
  21. T. Martin, “An improved near- to far-zone transformation for the finite-difference time-domain method,” IEEE Trans. Antennas Propag. 46, 1263–1271 (1998). [CrossRef]
  22. E. Collett, Polarized Light Fundamentals and Applications (Marcel Dekker, New York, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited