OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2013–2033

Coding of color and form in the geniculostriate visual pathway (invited review)

Peter Lennie and J. Anthony Movshon  »View Author Affiliations


JOSA A, Vol. 22, Issue 10, pp. 2013-2033 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002013


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review how neurons in the principal pathway connecting the retina to the visual cortex represent information about the chromatic and spatial characteristics of the retinal image. Our examination focuses particularly on individual neurons: what are their visual properties, how might these properties arise, what do these properties tell us about visual signal transformations, and how might these properties be expressed in perception? Our discussion is inclined toward studies on old-world monkeys and where possible emphasizes quantitative work that has led to or illuminates models of visual signal processing.

© 2005 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5380) Vision, color, and visual optics : Physiology
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: June 2, 2005
Manuscript Accepted: June 2, 2005
Published: October 1, 2005

Citation
Peter Lennie and J. Anthony Movshon, "Coding of color and form in the geniculostriate visual pathway (invited review)," J. Opt. Soc. Am. A 22, 2013-2033 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-10-2013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel, “Cortical neurobiology: a slanted historical perspective,” Annu. Rev. Neurosci. 5, 363–370 (1982). [CrossRef] [PubMed]
  2. V. Mountcastle, “The evolution of ideas concerning the function of the neocortex,” Cereb. Cortex 5, 289–295 (1995). [CrossRef] [PubMed]
  3. N. Y. Kiang, “Processing of speech by the auditory nervous system,” J. Acoust. Soc. Am. 68, 830–835 (1980). [CrossRef] [PubMed]
  4. G. S. Brindley, Physiology of the Retina and the Visual Pathway, 2nd ed. (Arnold, 1970), p. 311.
  5. G. S. Brindley, Physiology of the Retina and the Visual Pathway (Arnold, London, 1960).
  6. D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).
  7. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interactions, and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  8. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  9. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989). [CrossRef]
  10. M. M. Adams, P. R. Hof, R. Gattass, M. J. Webster, L. G. Ungerleider, “Visual cortical projections and chemoarchitecture of macaque monkey pulvinar,” J. Comp. Neurol. 419, 377–393 (2000). [CrossRef] [PubMed]
  11. W. Fries, “The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey,” Proc. R. Soc. London, Ser. B 213, 73–86 (1981). [CrossRef]
  12. J. Bullier, H. Kennedy, “Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey,” Exp. Brain Res. 53, 168–172 (1983). [CrossRef] [PubMed]
  13. A. Lysakowski, G. P. Standage, L. A. Benevento, “An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: a double label retrograde tracer study,” Exp. Brain Res. 69, 651–661 (1988). [CrossRef] [PubMed]
  14. L. C. Sincich, K. F. Park, M. J. Wohlgemuth, J. C. Horton, “Bypassing V1: a direct geniculate input to area MT,” Nat. Neurosci. 7, 1123–1118 (2004). [CrossRef] [PubMed]
  15. P. H. Schiller, J. G. Malpeli, “The effect of striate cortex cooling on area 18 cells in the monkey,” Brain Res. 126, 366–369 (1977). [CrossRef] [PubMed]
  16. H. R. Rodman, C. G. Gross, T. D. Albright, “Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal,” J. Neurosci. 9, 2033–2050 (1989). [PubMed]
  17. H. R. Rodman, C. G. Gross, T. D. Albright, “Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal,” J. Neurosci. 10, 1154–1164 (1990). [PubMed]
  18. C. E. Collins, D. C. Lyon, J. H. Kaas, “Responses of neurons in the middle temporal visual area after long-standing lesions of the primary visual cortex in adult new world monkeys,” J. Neurosci. 23, 2251–2264 (2003). [PubMed]
  19. J. D. Mollon, “The origins of modern color science,” in The Science of Color, S. K. Shevell, ed. (Elsevier, 2003), pp. 1–39. [CrossRef]
  20. “The CIE triangle is brilliantly ingenious as an aid to the calculations of chromaticities which can be upheld in a court of law where colour specification is in dispute. But that triangle is monstrous as an indication of what is going on in the mechanism of vision. It displays all colours as a mixture of three primary lights, none of which have an existence that can be easily imagined. One of the three primaries is bright; it is a pure green from which is subtracted a lot of red which it does not contain. The other two primaries are quite dark; they have strong colour but zero luminance. These do not seem to me ingredients that lead to clarity in our conception of colour mechanisms and I am astonished that some physiologists and many psychologists employ them to instruct the young and bewilder the old.” W. A.H. Rushton, “Pigments and signals in colour vision,” J. Physiol. (London) 220, 1–31P (1970).
  21. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957). [CrossRef] [PubMed]
  22. R. L. De Valois, C. J. Smith, A. J. Karoly, S. T. Kitai, “Electrical responses of primate visual system. I. Different layers of macaque lateral geniculate nucleus,” J. Comp. Physiol. Psychol. 51, 662–668 (1958). [CrossRef] [PubMed]
  23. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef] [PubMed]
  24. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966). [PubMed]
  25. J. K. Bowmaker, H. J.A. Dartnall, J. N. Lythgoe, J. D. Mollon, “The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta ,” J. Physiol. (London) 274, 329–348 (1978).
  26. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis ,” J. Physiol. (London) 390, 145–160 (1987).
  27. V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975). [CrossRef] [PubMed]
  28. G. H. Jacobs, “Photopigments and seeing—lessons from natural experiments,” Invest. Ophthalmol. Visual Sci. 39, 2205–2216 (1998).
  29. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London, Ser. B 127, 64–105 (1939). [CrossRef]
  30. D. M. Schneeweis, J. L. Schnapf, “The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics,” J. Neurosci. 19, 1203–1216 (1999). [PubMed]
  31. V. C. Smith, J. Pokorny, B. B. Lee, D. M. Dacey, “Primate horizontal cell dynamics: an analysis of sensitivity regulation in the outer retina,” J. Neurophysiol. 85, 545–558 (2001). [PubMed]
  32. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (London) 199, 533–547 (1968).
  33. D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vision Res. 40, 1801–1811 (2000). [CrossRef] [PubMed]
  34. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  35. S. H.C. Hendry, T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994). [CrossRef] [PubMed]
  36. D. M. Dacey, O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003). [CrossRef] [PubMed]
  37. P. R. Martin, A. J. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997). [CrossRef] [PubMed]
  38. S. Chatterjee, E. M. Callaway, “Parallel colour-opponent pathways to primary visual cortex,” Nature 426, 668–671 (2003). [CrossRef] [PubMed]
  39. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983). [CrossRef]
  40. D. L. Ruderman, T. W. Cronin, C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  41. T. Lee, T. Wachtler, T. Sejnowski, “Color opponency is an efficient representation of spectral properties in natural scenes,” Vision Res. 42, 2095–2103 (2002). [CrossRef] [PubMed]
  42. B. B. Lee, C. Wehrhahn, G. Westheimer, J. Kremers, “The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers,” Vision Res. 35, 2743–2758 (1995). [CrossRef] [PubMed]
  43. V. H. Perry, R. Öhler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience (Oxford) 12, 1101–1123 (1984). [CrossRef]
  44. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).
  45. P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993). [CrossRef] [PubMed]
  46. S. Chatterjee, E. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002). [CrossRef] [PubMed]
  47. S. G. Solomon, P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005). [CrossRef] [PubMed]
  48. R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sens Processes 1, 244–259 (1977). [PubMed]
  49. P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988). [PubMed]
  50. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef] [PubMed]
  51. D. M. Dacey, B. B. Lee, “The blue-on opponent pathway in the primate retina originates from a distinct bistratified ganglion cell,” Nature 367, 731–735 (1994). [CrossRef] [PubMed]
  52. D. M. Dacey, H. W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K. W. Yau, P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef] [PubMed]
  53. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982). [CrossRef] [PubMed]
  54. C. R. Ingling, “The spectral sensitivity of the opponent-colors channels,” Vision Res. 17, 1083–1090 (1977). [CrossRef]
  55. B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979). [CrossRef]
  56. F. M. de Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981). [CrossRef]
  57. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  58. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. B. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  59. R. W. Rodieck, “Which cells code for color?” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 83–94. [CrossRef]
  60. D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999). [CrossRef] [PubMed]
  61. J. D. Mollon, “Uses and evolutionary origins of primate colour vision,” in Evolution of the Eye and Visual System, J. Cronly-Dillon and R. L. Gregory, eds. (Macmillan, 1991), pp. 306–319.
  62. P. Lennie, P. W. Haake, D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 71–82.
  63. A. Roorda, A. B. Metha, P. Lennie, D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41, 1291–1306 (2001). [CrossRef] [PubMed]
  64. L. Diller, O. S. Packer, J. Verweij, M. J. McMahon, D. R. Williams, D. M. Dacey, “L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina,” J. Neurosci. 24, 1079–1088 (2004). [CrossRef] [PubMed]
  65. S. G. Solomon, B. B. Lee, A. J. White, L. Ruttiger, P. R. Martin, “Chromatic organization of ganglion cell receptive fields in the peripheral retina,” J. Neurosci. 25, 4527–4539 (2005). [CrossRef] [PubMed]
  66. R. C. Reid, R. M. Shapley, “Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus,” J. Neurosci. 22, 6158–6175 (2002). [PubMed]
  67. D. M. Dacey, L. C. Diller, J. Verweij, D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000). [CrossRef]
  68. S. G. Solomon, P. Lennie, “Spatial organization of L- and M-cone inputs to neurons in the macaque LGN,” presented at the Vision Sciences Society Annual Meeting, Sarasota, Fla., May 6–11, 2005.
  69. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  70. E. N. Johnson, M. J. Hawken, R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409–416 (2001). [CrossRef] [PubMed]
  71. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000). [CrossRef] [PubMed]
  72. R. G. Vautin, B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273–292 (1985). [PubMed]
  73. T. Wachtler, T. J. Sejnowski, T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003). [CrossRef] [PubMed]
  74. D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997). [CrossRef]
  75. K. R. Gegenfurtner, D. C. Kiper, J. B. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophysiol. 77, 1906–1923 (1997). [PubMed]
  76. H. Komatsu, Y. Ideura, “Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey,” J. Neurophysiol. 70, 677–694 (1993). [PubMed]
  77. S. A. Engel, C. S. Furmanski, “Selective adaptation to color contrast in human primary visual cortex,” J. Neurosci. 21, 3949–3954 (2001). [PubMed]
  78. C. T. Tailby, S. G. Solomon, N. T. Dhruv, N. Majaj, P. Lennie, “Habituation reveals cardinal chromatic mechanisms in striate cortex of macaque,” presented at the Vision Sciences Society, Annual Meeting, Sarasotsa, Fla., May 6–11, 2005.
  79. J. Rabin, E. Switkes, M. Crognale, M. E. Schneck, A. J. Adams, “Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing,” Vision Res. 34, 2657–2671 (1994). [CrossRef] [PubMed]
  80. S. Engel, X. Zhang, B. Wandell, “Color tuning in human visual cortex measured with functional magnetic resonance imaging,” Nature 388, 68–71 (1997). [CrossRef] [PubMed]
  81. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986). [CrossRef] [PubMed]
  82. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994). [CrossRef] [PubMed]
  83. A. Hanazawa, H. Komatsu, I. Murakami, “Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey,” Eur. J. Neurosci. 12, 1753–1763 (2000). [CrossRef] [PubMed]
  84. N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998). [CrossRef] [PubMed]
  85. G. D. Horwitz, E. J. Chichilnisky, T. D. Albright, “Blue–yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005). [CrossRef]
  86. G. J.C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969). [CrossRef] [PubMed]
  87. L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984). [CrossRef] [PubMed]
  88. S. G. Solomon, J. W. Peirce, P. Lennie, “The impact of suppressive surrounds on chromatic properties of cortical neurons,” J. Neurosci. 24, 148–160 (2004). [CrossRef] [PubMed]
  89. S. S. Deeb, L. C. Diller, D. R. Williams, D. M. Dacey, “Interindividual and topographical variation of L:M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000). [CrossRef]
  90. M. S. Caywood, B. Willmore, D. J. Tolhurst, “Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning,” J. Neurophysiol. 91, 2859–2873 (2004). [CrossRef] [PubMed]
  91. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001). [PubMed]
  92. B. R. Conway, D. H. Hubel, M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002). [CrossRef] [PubMed]
  93. E. N. Johnson, M. J. Hawken, R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004). [CrossRef] [PubMed]
  94. P. Monnier, S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003). [CrossRef] [PubMed]
  95. S. X. Xian, S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Visual Neurosci. 21, 383–388 (2004). [CrossRef]
  96. N. W. Daw, “The psychology and physiology of colour vision,” Trends Neurosci. 7, 330–335 (1984). [CrossRef]
  97. S. M. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience (Oxford) 9, 767–781 (1983). [CrossRef]
  98. D. Y. Ts’o, C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712–1727 (1988). [PubMed]
  99. S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953). [PubMed]
  100. C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).
  101. E. Kaplan, R. M. Shapley, “ X and Y cells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. (London) 330, 125–144 (1982).
  102. A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).
  103. L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995). [CrossRef] [PubMed]
  104. S. Hochstein, R. M. Shapley, “Quantitative analysis of retinal ganglion cell classification,” J. Physiol. (London) 262, 237–264 (1976).
  105. J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001). [PubMed]
  106. P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,” J. Neurophysiol. 41, 788–797 (1978). [PubMed]
  107. J. R.H. Maunsell, J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,” J. Neurophysiol. 68, 1332–1344 (1992). [PubMed]
  108. M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal-frequency selectivity in monkey visual cortex,” Visual Neurosci. 13, 477–492 (1996). [CrossRef]
  109. R. M. Shapley, J. D. Victor, “The effect of contrast on the transfer properties of cat retinal ganglion cells,” J. Physiol. (London) 285, 275–298 (1978).
  110. R. Shapley, J. D. Victor, “The contrast gain control of the cat retina,” Vision Res. 19, 431–434 (1979). [CrossRef] [PubMed]
  111. S. H. Hendry, R. C. Reid, “The koniocellular pathway in primate vision,” Annu. Rev. Neurosci. 23, 127–153 (2000). [CrossRef] [PubMed]
  112. J. A. Movshon, L. Kiorpes, M. J. Hawken, J. R. Cavanaugh, “Functional maturation of the macaque’s lateral geniculate nucleus,” J. Neurosci. 25, 2712–2722 (2005). [CrossRef] [PubMed]
  113. A. J. White, S. G. Solomon, P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus ,” J. Physiol. (London) 533, 519–535 (2001). [CrossRef]
  114. D. H. Hubel, T. N. Wiesel, “Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey,” J. Comp. Neurol. 146, 421–450 (1972). [CrossRef] [PubMed]
  115. J. O’Kusky, M. Colonnier, “A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys,” J. Comp. Neurol. 210, 278–290 (1982). [CrossRef]
  116. G. G. Blasdel, D. Fitzpatrick, “Physiological organization of layer 4 in macque striate cortex,” J. Neurosci. 4, 880–895 (1984). [PubMed]
  117. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single cell properties in monkey striate cortex. III. Spatial frequency,” J. Neurophysiol. 39, 1334–1351 (1976). [PubMed]
  118. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–560 (1982). [CrossRef] [PubMed]
  119. J. M. Alonso, W. M. Usrey, R. C. Reid, “Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex,” J. Neurosci. 21, 4002–4015 (2001). [PubMed]
  120. D. L. Ringach, “Haphazard wiring of simple receptive fields and orientation columns in visual cortex,” J. Neurophysiol. 92, 468–476 (2004). [CrossRef] [PubMed]
  121. R. E. Soodak, “The retinal ganglion cell mosaic defines orientation columns in striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 84, 3936–3940 (1987). [CrossRef] [PubMed]
  122. R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985). [CrossRef] [PubMed]
  123. R. L. De Valois, K. K. De Valois, Spatial Vision, Oxford Psychology Series (Oxford U. Press, Oxford, 1988), p. 381.
  124. R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974). [CrossRef] [PubMed]
  125. D. C. Kiper, K. R. Gegenfurtner, L. Kiorpes, “Spatial frequency channels in experimentally strabismic monkeys revealed by oblique masking,” Vision Res. 35, 2737–2742 (1995). [CrossRef] [PubMed]
  126. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, 1980), pp. 177–214.
  127. D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: Are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980). [CrossRef] [PubMed]
  128. B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607–609 (1996). [CrossRef] [PubMed]
  129. A. J. Bell, T. J. Sejnowski, “The ‘independent components’ of natural scenes are edge filters,” Vision Res. 37, 3327–3339 (1997). [CrossRef]
  130. J. H. van Hateren, D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315–2320 (1998). [CrossRef]
  131. E. Schwartz, R. B. Tootell, M. S. Silverman, E. Switkes, R. L. De Valois, “On the mathematical structure of the visuotopic mapping of macaque striate cortex,” Science 227, 1065–1066 (1985). [CrossRef] [PubMed]
  132. M. A. Webster, R. L. De Valois, “Relationship between spatial-frequency and orientation tuning of striate-cortex cells,” J. Opt. Soc. Am. A 2, 1124–1132 (1985). [CrossRef] [PubMed]
  133. S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1999).
  134. D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991). [CrossRef] [PubMed]
  135. K. S. Rockland, D. N. Pandya, “Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey,” Brain Res. 179, 3–20 (1979). [CrossRef] [PubMed]
  136. M. S. Livingstone, D. H. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology and perception,” Science 240, 740–749 (1988). [CrossRef] [PubMed]
  137. K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).
  138. J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996). [PubMed]
  139. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  140. J. McLean, L. A. Palmer, “Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat,” Vision Res. 29, 675–680 (1989). [CrossRef] [PubMed]
  141. R. C. Reid, R. E. Soodak, R. M. Shapley, “Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex,” J. Neurophysiol. 66, 505–529 (1991). [PubMed]
  142. D. J. Tolhurst, A. F. Dean, “Evaluation of a linear model of directional selectivity in simple cells of the cat’s striate cortex,” Visual Neurosci. 6, 421–428 (1991). [CrossRef]
  143. M. S. Livingstone, “Mechanisms of direction selectivity in macaque V1,” Neuron 20, 509–526 (1998). [CrossRef] [PubMed]
  144. R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000). [CrossRef] [PubMed]
  145. B. R. Conway, M. S. Livingstone, “Space–time maps and two-bar interactions of different classes of direction-selective cells in macaque V1,” J. Neurophysiol. 89, 2726–2742 (2003). [CrossRef] [PubMed]
  146. J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. H. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gatass, and C. Gross, eds. (Springer-Verlag, 1985), pp. 117–151.
  147. C. C. Pack, M. S. Livingstone, K. R. Duffy, R. T. Born, “End-stopping and the aperture problem: two-dimensional motion signals in macaque V1,” Neuron 39, 671–680 (2003). [CrossRef] [PubMed]
  148. C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  149. L. Maffei, A. Fiorentini, S. Bisti, “Neural correlate of perceptual adaptation to gratings,” Science 182, 1036–1038 (1973). [CrossRef] [PubMed]
  150. D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).
  151. I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985). [PubMed]
  152. G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989). [CrossRef] [PubMed]
  153. S. G. Solomon, J. W. Peirce, N. T. Dhruv, P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004). [CrossRef] [PubMed]
  154. D. Chander, E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001). [PubMed]
  155. A. Kohn, J. A. Movshon, “Adaptation changes the direction tuning of macaque MT neurons,” Nat. Neurosci. 7, 764–772 (2004). [CrossRef] [PubMed]
  156. J. A. Movshon, P. Lennie, “Pattern-selective adaptation in visual cortical neurones,” Nature 278, 850–852 (1979). [CrossRef] [PubMed]
  157. M. Carandini, H. B. Barlow, L. P. O’Keefe, A. B. Poirson, J. A. Movshon, “Adaptation to contingencies in macaque primary visual cortex,” Philos. Trans. R. Soc. London, Ser. B 352, 1149–1154 (1997). [CrossRef] [PubMed]
  158. J. R. Müller, A. B. Metha, J. Krauskopf, P. Lennie, “Rapid adaptation in visual cortex to the structure of images,” Science 285, 1405–1408 (1999). [CrossRef] [PubMed]
  159. V. Dragoi, J. Sharma, M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287–298 (2000). [CrossRef] [PubMed]
  160. V. Dragoi, J. Sharma, E. K. Miller, M. Sur, “Dynamics of neuronal sensitivity in visual cortex and local feature discrimination,” Nat. Neurosci. 5, 883–891 (2002). [CrossRef] [PubMed]
  161. M. Carandini, D. Ferster, “A tonic hyperpolarization underlying contrast adaptation in cat visual cortex,” Science 276, 949–952 (1997). [CrossRef] [PubMed]
  162. M. V. Sanchez-Vives, L. G. Nowak, D. A. McCormick, “Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo ,” J. Neurosci. 20, 4267–4285 (2000). [PubMed]
  163. F. S. Chance, S. B. Nelson, L. F. Abbott, “Synaptic depression and the temporal response characteristics of V1 cells,” J. Neurosci. 18, 4785–4799 (1998). [PubMed]
  164. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).
  165. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).
  166. J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1187–1211 (1987). [PubMed]
  167. J. P. Jones, A. Stepnoski, L. A. Palmer, “The two-dimensional spectral structure of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1212–1232 (1987). [PubMed]
  168. G. C. DeAngelis, I. Ohzawa, R. D. Freeman, “Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation,” J. Neurophysiol. 69, 1118–1135 (1993). [PubMed]
  169. H. Spitzer, S. Hochstein, “A complex-cell receptive field model,” J. Neurophysiol. 53, 1266–1286 (1985). [PubMed]
  170. J. Touryan, B. Lau, Y. Dan, “Isolation of relevant visual features from random stimuli for cortical complex cells,” J. Neurosci. 22, 10811–10818 (2002). [PubMed]
  171. M. S. Livingstone, B. R. Conway, “Substructure of direction-selective receptive fields in macaque V1,” J. Neurophysiol. 89, 2743–2759 (2003). [CrossRef] [PubMed]
  172. N. C. Rust, O. Schwartz, J. A. Movshon, E. P. Simoncelli, “Spatiotemporal elements of macaque V1 receptive fields,” Neuron 46, 945–956 (2005). [CrossRef] [PubMed]
  173. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  174. L. P. O’Keefe, J. A. Movshon, “Processing of first and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  175. F. S. Chance, S. B. Nelson, L. F. Abbott, “Complex cells as cortically amplified simple cells,” Nat. Neurosci. 2, 277–282 (1999). [CrossRef] [PubMed]
  176. L. Tao, M. Shelley, D. McLaughlin, R. Shapley, “An egalitarian network model for the emergence of simple and complex cells in visual cortex,” Proc. Natl. Acad. Sci. U.S.A., 101, 366–371 (2004). [CrossRef]
  177. B. C. Skottun, R. S. De Valois, D. H. Grosof, J. A. Movshon, D. G. Albrecht, A. B. Bonds, “Classifying simple and complex cells on the basis of response modulation,” Vision Res. 31, 1079–1086 (1991). [CrossRef] [PubMed]
  178. N. J. Priebe, F. Mechler, M. Carandini, D. Ferster, “The contribution of spike threshold to the dichotomy of cortical simple and complex cells,” Nat. Neurosci. 7, 1113–1122 (2004). [CrossRef] [PubMed]
  179. K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).
  180. D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982). [PubMed]
  181. G. Sclar, R. D. Freeman, “Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast,” Exp. Brain Res. 46, 457–461 (1982). [CrossRef]
  182. M. Carandini, D. J. Heeger, J. A. Movshon, “Linearity and normalization in simple cells of the macaque primary visual cortex,” J. Neurosci. 17, 8621–8644 (1997). [PubMed]
  183. O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: response in a co-operative neuronal network,” Exp. Brain Res. 21, 251–274 (1974). [CrossRef] [PubMed]
  184. A. M. Sillito, “The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat,” J. Physiol. (London) 250, 305–329 (1975).
  185. K. K. De Valois, R. B.H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).
  186. A. B. Bonds, “Role of inhibition in the specification of orientation-selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989). [CrossRef]
  187. G. C. DeAngelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992). [PubMed]
  188. D. G. Albrecht, “Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions,” Visual Neurosci. 12, 1191–1210 (1995). [CrossRef]
  189. D. G. Albrecht, W. S. Geisler, R. A. Frazor, A. M. Crane, “Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function,” J. Neurophysiol. 88, 888–913 (2002). [PubMed]
  190. W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992). [CrossRef] [PubMed]
  191. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992). [CrossRef]
  192. J. D. Allison, K. R. Smith, A. B. Bonds, “Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex,” Visual Neurosci. 18, 941–948 (2001).
  193. T. C. Freeman, S. Durand, D. C. Kiper, M. Carandini, “Suppression without inhibition in visual cortex,” Neuron 35, 759–771 (2002). [CrossRef] [PubMed]
  194. M. Carandini, D. J. Heeger, W. Senn, “A synaptic explanation of suppression in visual cortex,” J. Neurosci. 22, 10053–10065 (2002). [PubMed]
  195. T. W. Troyer, A. E. Krukowski, N. J. Priebe, K. D. Miller, “Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity,” J. Neurosci. 18, 5908–5927 (1998). [PubMed]
  196. M. Carandini, D. Ferster, “Membrane potential and firing rate in cat primary visual cortex,” J. Neurosci. 20, 470–484 (2000). [PubMed]
  197. J. S. Anderson, I. Lampl, D. C. Gillespie, D. Ferster, “The contribution of noise to contrast invariance of orientation tuning in cat visual cortex,” Science 290, 1968–1972 (2000). [CrossRef] [PubMed]
  198. D. J. Heeger, “Half-squaring in responses of cat striate cells,” Visual Neurosci. 9, 427–443 (1992). [CrossRef]
  199. D. J. Tolhurst, D. J. Heeger, “Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex,” Visual Neurosci. 14, 293–309 (1997). [CrossRef]
  200. G. Sclar, J. H.R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990). [CrossRef] [PubMed]
  201. D. J. Tolhurst, D. J. Heeger, “Contrast normalization and a linear model for the directional selectivity in simple cells in cat striate cortex,” Visual Neurosci. 14, 19–25 (1997). [CrossRef]
  202. J. A. Hirsch, J. M. Alonso, R. C. Reid, L. M. Martinez, “Synaptic integration in striate cortical simple cells,” J. Neurosci. 18, 9517–9528 (1998). [PubMed]
  203. I. Lampl, J. S. Anderson, D. C. Gillespie, D. Ferster, “Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex,” Neuron 30, 263–274 (2001). [CrossRef] [PubMed]
  204. N. J. Priebe, D. Ferster, “Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex,” Neuron 45, 133–145 (2005). [CrossRef] [PubMed]
  205. C. Beaulieu, M. Colonnier, “A comparison of the number of neurons in individual laminae of cortical areas 17, 18 and posteromedial suprasylvian (PMLS) area in the cat,” Brain Res. 339, 166–170 (1985). [CrossRef] [PubMed]
  206. S. Hendry, R. K. Carder, “Organization and plasticity of GABA neurons and receptors in monkey visual cortex,” Prog. Brain Res. 90, 477–502 (1992). [CrossRef] [PubMed]
  207. D. J. Tolhurst, A. F. Dean, “The effects of contrast on the linearity of spatial summation of simple cells in the cat’s striate cortex,” Exp. Brain Res. 79, 582–588 (1990). [CrossRef]
  208. P. Heggelund, “Receptive field organization of complex cells in cat striate cortex,” Exp. Brain Res. 42, 90–107 (1981). [PubMed]
  209. L. A. Palmer, T. L. Davis, “Receptive-field structure in cat striate cortex,” J. Neurophysiol. 46, 260–276 (1981). [PubMed]
  210. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988). [PubMed]
  211. L. J. Borg-Graham, C. Monier, Y. Frégnac, “Visual input evokes transient and strong shunting inhibition in visual cortical neurons,” Nature 393, 369–372 (1998). [CrossRef] [PubMed]
  212. S. Nelson, L. Toth, B. Sheth, M. Sur, “Orientation selectivity of cortical neurons during intracellular blockade of inhibition,” Science 265, 774–777 (1994). [CrossRef] [PubMed]
  213. R. L. De Valois, E. W. Yund, N. Helper, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982). [CrossRef] [PubMed]
  214. D. L. Ringach, M. J. Hawken, R. Shapley, “Dynamics of orientation tuning in macaque primary visual cortex,” Nature 387, 281–284 (1997). [CrossRef] [PubMed]
  215. D. L. Ringach, M. J. Hawken, R. Shapley, “Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression,” J. Neurophysiol. 90, 342–352 (2003). [CrossRef] [PubMed]
  216. J. A. Mazer, W. E. Vinje, J. McDermott, P. H. Schiller, J. L. Gallant, “Spatial frequency and orientation tuning dynamics in area V1,” Proc. Natl. Acad. Sci. U.S.A. 99, 1645–1650 (2002). [CrossRef] [PubMed]
  217. D. Xing, R. M. Shapley, M. J. Hawken, D. L. Ringach, “The effect of stimulus size on the dynamics of orientation selectivity in Macaque V1,” J. Neurophysiol. 94, 799–812 (2005). [CrossRef] [PubMed]
  218. V. Braitenberg, A. Schütz, Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd ed. (Springer, 1998).
  219. R. J. Douglas, K. A. Martin, “A functional microcircuit for cat visual cortex,” J. Physiol. (London) 440, 735–769 (1991).
  220. R. J. Douglas, C. Koch, M. Mahowald, K. A.C. Martin, H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995). [CrossRef] [PubMed]
  221. R. Ben-Yishai, R. L. Bar-Or, H. Sompolinsky, “Theory of orientation tuning in visual cortex,” Proc. Natl. Acad. Sci. U.S.A. 92, 3844–3848 (1995). [CrossRef] [PubMed]
  222. D. C. Somers, S. B. Nelson, M. Sur, “An emergent model of orientation selectivity in cat visual cortical simple cells,” J. Neurosci. 15, 5448–5465 (1995). [PubMed]
  223. P. Adorjan, J. B. Levitt, J. S. Lund, K. Obermayer, “A model for the intracortical origin of orientation preference and tuning in macaque striate cortex,” Visual Neurosci. 16, 303–318 (1999). [CrossRef]
  224. D. McLaughlin, R. Shapley, M. Shelley, D. J. Wielaard, “A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha,” Proc. Natl. Acad. Sci. U.S.A. 97, 8087–8092 (2000). [CrossRef] [PubMed]
  225. X. Pei, T. R. Vidyasagar, M. Volgushev, O. D. Creutzfeldt, “Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex,” J. Neurosci. 14, 7130–7140 (1994). [PubMed]
  226. D. Ferster, S. Chung, H. Wheat, “Orientation selectivity of thalamic input to simple cells of cat visual cortex,” Nature 380, 249–252 (1996). [CrossRef] [PubMed]
  227. S. Chung, D. Ferster, “Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression,” Neuron 20, 1177–1189 (1998). [CrossRef] [PubMed]
  228. B. Dreher, “Hypercomplex cells in the cat’s striate cortex,” Invest. Ophthalmol. 11, 355–356 (1972). [PubMed]
  229. C. D. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. (London) 268, 391–421 (1977).
  230. M. K. Kapadia, M. Ito, C. D. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995). [CrossRef] [PubMed]
  231. J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997). [CrossRef] [PubMed]
  232. J. R. Cavanaugh, W. Bair, J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002). [CrossRef] [PubMed]
  233. J. I. Nelson, B. J. Frost, “Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex,” Exp. Brain Res. 61, 54–61 (1985). [CrossRef] [PubMed]
  234. G. C. DeAngelis, R. D. Freeman, I. Ohzawa, “Length and width tuning of neurons in the cat’s primary visual cortex,” J. Neurophysiol. 71, 347–374 (1994). [PubMed]
  235. R. L. De Valois, L. G. Thorell, D. G. Albrecht, “Periodicity of striate-cortex-cell receptive fields,” J. Opt. Soc. Am. A 2, 1115–1123 (1985). [CrossRef] [PubMed]
  236. J. J. Knierim, D. C. Van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992). [PubMed]
  237. A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492–496 (1995). [CrossRef] [PubMed]
  238. M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley, “Contrast’s effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999). [CrossRef] [PubMed]
  239. M. P. Sceniak, M. J. Hawken, R. Shapley, “Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size,” J. Neurophysiol. 88, 1363–1373 (2002). [PubMed]
  240. J. R. Cavanaugh, W. Bair, J. A. Movshon, “Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons,” J. Neurophysiol. 88, 2547–2556 (2002). [CrossRef] [PubMed]
  241. J. R. Müller, A. B. Metha, J. Krauskopf, P. Lennie, “Local signals from beyond the receptive fields of striate cortical neurons,” J. Neurophysiol. 90, 822–831 (2003). [CrossRef] [PubMed]
  242. K. Zipser, V. A.F. Lamme, P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376–7389 (1996). [PubMed]
  243. F. Ratliff, “Contour and contrast,” Sci. Am. 226, 91–101 (1972). [CrossRef] [PubMed]
  244. O. Schwartz, E. P. Simoncelli, “Natural signal statistics and sensory gain control,” Nat. Neurosci. 4, 819–825 (2001). [CrossRef] [PubMed]
  245. W. Bair, J. R. Cavanaugh, J. A. Movshon, “Time course and time-distance relationships for surround suppression in macaque V1 neurons,” J. Neurosci. 23, 7690–7701 (2003). [PubMed]
  246. A. Angelucci, J. B. Levitt, E. J. Walton, J. M. Hupe, J. Bullier, J. S. Lund, “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci. 22, 8633–8646 (2002). [PubMed]
  247. S. G. Solomon, A. J. White, P. R. Martin, “Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus,” J. Neurosci. 22, 338–349 (2002). [PubMed]
  248. M. Colonnier, “The organizing principles of the primary visual cortex in monkey,” in Cerebral Cortex, A. Peters and E. G. Jones, eds. (Plenum, 1985).
  249. J. S. Lund, M. J. Hawken, A. J. Parker, “Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6,” J. Comp. Neurol. 276, 1–29 (1988). [CrossRef] [PubMed]
  250. E. M. Callaway, “Local circuits in primary visual cortex of the macaque monkey,” Annu. Rev. Neurosci. 21, 47–74 (1998). [CrossRef] [PubMed]
  251. M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey,” J. Neurosci. 8, 3541–3548 (1988). [PubMed]
  252. N. H. Yabuta, A. Sawatari, E. M. Callaway, “Two functional channels from primary visual cortex to dorsal visual cortical areas,” Science 292, 297–300 (2001). [CrossRef] [PubMed]
  253. R. B.H. Tootell, M. S. Silverman, S. L. Hamilton, R. L. De Valois, E. Switkes, “Functional anatomy of macaque striate cortex III. Color,” J. Neurosci. 8, 1569–1593 (1988). [PubMed]
  254. J. J. Malpeli, P. Schiller, C. L. Colby, “Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae,” J. Neurophysiol. 46, 1102–1119 (1981). [PubMed]
  255. J. D. Allison, P. Melzer, Y. Ding, A. B. Bonds, V. A. Casagrande, “Differential contributions of magnocellular and parvocellular pathways to the contrast response of neurons in bush baby primary visual cortex (V1),” Visual Neurosci. 17, 71–76 (2000). [CrossRef]
  256. J. C. Horton, “Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex,” Philos. Trans. R. Soc. London, Ser. B 304, 199–253 (1984). [CrossRef] [PubMed]
  257. E. W. Carroll, M. T. Wong-Riley, “Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey,” J. Comp. Neurol. 222, 1–17 (1984). [CrossRef] [PubMed]
  258. M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984). [PubMed]
  259. C. E. Landisman, D. Y. Ts’o, “Color processing in macaque striate cortex: electrophysiological properties,” J. Neurophysiol. 87, 3138–3151 (2002). [PubMed]
  260. A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995). [PubMed]
  261. T. Yoshioka, J. B. Levitt, J. S. Lund, “Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections,” Visual Neurosci. 11, 467–489 (1994). [CrossRef]
  262. N. H. Yabuta, E. M. Callaway, “Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey,” J. Neurosci. 18, 9489–9499 (1998). [PubMed]
  263. E. M. Callaway, A. K. Wiser, “Contributions of individual layer 2-5 spiny neurons to local circuits in macaque primary visual cortex,” Visual Neurosci. 13, 907–922 (1996). [CrossRef]
  264. E. A. Lachica, V. A. Casagrande, “Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology,” J. Comp. Neurol. 319, 141–158 (1992). [CrossRef] [PubMed]
  265. C. E. Landisman, D. Y. Ts’o, “Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation,” J. Neurophysiol. 87, 3126–3137 (2002). [PubMed]
  266. M. S. Silverman, D. H. Grosof, R. L. De Valois, S. D. Elfar, “Spatial-frequency organization in primate striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 86, 711–715 (1989). [CrossRef] [PubMed]
  267. D. P. Edwards, K. P. Purpura, E. Kaplan, “Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs,” Vision Res. 35, 1501–1523 (1995). [CrossRef] [PubMed]
  268. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  269. B. M. Dow, R. G. Vautin, “Horizontal segregation of color information in the middle layers of foveal striate cortex,” J. Neurophysiol. 57, 712–739 (1987). [PubMed]
  270. R. Durbin, G. Mitchison, “A dimension reduction framework for understanding cortical maps,” Nature 343, 644–647 (1990). [CrossRef] [PubMed]
  271. D. H. Hubel, T. N. Wiesel, “The Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977). [CrossRef]
  272. M. Shadlen, W. T. Newsome, “The variable discharge rate of cortical neurons: implications for connectivity, computation, and information coding,” J. Neurosci. 18, 3870–3896 (1998). [PubMed]
  273. I. Lampl, I. Reichova, D. Ferster, “Synchronous membrane potential fluctuations in neurons of the cat visual cortex,” Neuron 22, 361–374 (1999). [CrossRef] [PubMed]
  274. D. A. Leopold, N. K. Logothetis, “Spatial patterns of spontaneous local field activity in the monkey visual cortex,” Rev. Neurosci. 14, 195–205 (2003). [PubMed]
  275. W. R. Garner, The Processing of Information and Structure (Erlbaum, 1974).
  276. P. Lennie, “Single units and visual cortical organization,” Perception 27, 889–935 (1998). [CrossRef]
  277. G. C. DeAngelis, I. Ohzawa, R. D. Freeman, “Receptive-field dynamics in the central visual pathways,” Trends Neurosci. 18, 451–458 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited