OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2107–2119

Response saturation of monochromatic increments on intense achromatic backgrounds: implications for color-opponent organization in human vision

Bruce Drum and Charles E. Sternheim  »View Author Affiliations


JOSA A, Vol. 22, Issue 10, pp. 2107-2119 (2005)
http://dx.doi.org/10.1364/JOSAA.22.002107


View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present evidence that steady achromatic adapting fields can produce response saturation in color-opponent pathways. We measured tvi (log increment threshold illuminance versus log background illuminance) functions at four test wavelengths (430, 490, 575, and 660 nm ) and nine background illuminances from 4.0   to   5.6 log Td . Foveal, 2° diameter, 1 s duration test stimuli were presented on a concentric, perceptually white ( 5128 ° K color temperature), 7° diameter, steady background. Thresholds were obtained by the method of adjustment, after which the test stimulus illuminances were increased 0.6 log unit and the subject estimated percentages of red, yellow, green, blue, and white. Average tvi slopes for two subjects were 2.06 for 430 nm , 1.6 for 490 nm , 1.11 for 575 nm and 1.34 for 660 nm , consistent with the estimated ratios of chromatic to achromatic sensitivity at the same wavelengths. Also, the percentage of white seen in the suprathreshold increments increased with increasing background illuminance despite increases in excitation purity. These findings imply that steady, intense, achromatic backgrounds can produce response saturation in color-opponent mechanisms at wavelengths across the visible spectrum. The saturation was more extreme at short wavelengths than at middle or long wavelengths, producing a tritanopic condition at the highest background illuminances. The tritanopia reduced color space to a predominately red–blue dichromacy, in agreement with previous findings. The results support a multistage opponent-color model in which precortical koniocellular and parvocellular opponent pathways interact to produce the observed red–green and yellow–blue color-opponent channels at a cortical level.

© 2005 Optical Society of America

OCIS Codes
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Color Vision

History
Original Manuscript: February 4, 2005
Revised Manuscript: May 25, 2005
Manuscript Accepted: May 26, 2005
Published: October 1, 2005

Citation
Bruce Drum and Charles E. Sternheim, "Response saturation of monochromatic increments on intense achromatic backgrounds: implications for color-opponent organization in human vision," J. Opt. Soc. Am. A 22, 2107-2119 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-10-2107

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited