OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 346–354

Finite-difference time-domain simulation of a liquid-crystal optical phased array

Xinghua Wang, Bin Wang, Philip J. Bos, James E. Anderson, John J. Pouch, and Felix A. Miranda  »View Author Affiliations


JOSA A, Vol. 22, Issue 2, pp. 346-354 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000346


View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate modeling of a high-resolution, liquid-crystal-based, optical phased array (OPA) is demonstrated. The modeling method is extendable to cases where the array element size is close to the wavelength of light. This is accomplished through calculating an equilibrium liquid-crystal (LC) director field that takes into account the fringing electric fields in LC OPAs with small array elements and by calculating the light transmission with a finite-difference time-domain method that has been extended for use in birefringent materials. The diffraction efficiency for a test device is calculated and compared with the simulation.

© 2005 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

History
Original Manuscript: June 23, 2004
Revised Manuscript: August 11, 2004
Manuscript Accepted: August 13, 2004
Published: February 1, 2005

Citation
Xinghua Wang, Bin Wang, Philip J. Bos, James E. Anderson, John J. Pouch, and Felix A. Miranda, "Finite-difference time-domain simulation of a liquid-crystal optical phased array," J. Opt. Soc. Am. A 22, 346-354 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-2-346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996). [CrossRef]
  2. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996). [CrossRef] [PubMed]
  3. R. M. Matic, “Blazed phase liquid crystal beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., Proc. SPIE2120, 194–205 (1994). [CrossRef]
  4. L. J. Friedman, D. S. Hobbs, S. Lieberman, D. L. Corkum, H. W. Nguyen, R. C. Sharp, T. A. Dorschner, “Spatially resolved phase imaging of a programmable liquid-crystal grating,” Appl. Opt. 35, 6236–6240 (1996). [CrossRef] [PubMed]
  5. V. G. Dominic, E. A. Watson, “Measurement and modeling of the angular dispersion in liquid crystal broadband beam steering devices,” Opt. Eng. (Bellingham) 35, 3371–3379 (1996). [CrossRef]
  6. X. Wang, D. Wilson, R. Muller, P. Maker, D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000). [CrossRef]
  7. M. T. Gruneisen, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed spatial light modulators,” in Spatial Light Modulators, G. Burdge, S. C. Esener, eds., Vol. 14 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997).
  8. G. D. Love, “Wavefront correction of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997). [CrossRef] [PubMed]
  9. M. T. Gruneisen, T. Martinez, D. V. Wick, J. M. Wilkes, J. T. Baker, I. Percheron, “Holographic compensation of severe dynamic aberrations in membrane-mirror based telescope systems,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3760, 142–152 (1999). [CrossRef]
  10. C. M. Titus, P. J. Bos, J. R. Kelly, E. C. Gartland, “Comparison of analytical calculations to finite-difference time-domain simulations of one-dimensional spatially varying anisotropic liquid crystal structures,” Jpn. J. Appl. Phys., Part 1 38, 1488–1494 (1999). [CrossRef]
  11. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. A. Anderson, P. J. Bos, “Asymmetric transmissive behavior of liquid-crystal diffraction gratings,” Opt. Lett. 26, 1188–1190 (2001). [CrossRef]
  12. L. M. Blinov, “Electro-optical effects in liquid crystal,” Sov. Phys. Usp. 17, 658–672 (1975). [CrossRef]
  13. P. G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford U. Press, Oxford, UK, 1993).
  14. J. Anderson, P. Watson, P. Bos, Liquid Crystal Display 3-D Director Simulator Software and Technical Guide (Artech House, Norwood, Mass., 2001).
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  16. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  17. E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal display by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000). [CrossRef]
  18. Bin Wang, Xinghua Wang, P. J. Bos, “Study of switchable liquid crystal polymer grating by finite-difference time-domain calculation,” in Liquid Crystals VII, I.-C. Khoo, ed., Proc. SPIE5213, 104–110 (2003). [CrossRef]
  19. G. F. Barrick, P. J. Bos, C. E. Titus, B. Winker, “Computing the liquid crystal director field in optical phased arrays,” Opt. Eng. (Bellingham) 43, 924–932 (2004). [CrossRef]
  20. A. Yefet, P. G. Petropoulos, “A staggered fourth-order accuracy explicit finite difference scheme for the time-domain Maxwell’s equations,” J. Comput. Phys. 168, 286–315 (2001). [CrossRef]
  21. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  23. X. Wang, B. Wang, J. J. Pouch, F. A. Miranda, M. Fisch, J. E. Anderson, V. Sergan, P. J. Bos, “Performance evaluation of liquid crystal on silicon (LCOS) spatial light modulator,” Opt. Eng. (Bellingham) 43, 2769–2774 (2004). [CrossRef]
  24. X. Wang, B. Wang, J. J. Pouch, F. A. Miranda, J. E. Anderson, P. J. Bos, “Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer,” in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE5162, 139–146 (2003). [CrossRef]
  25. K. Creath, “Choosing a phase-measurement algorithm for measurement of coated LIGO optics,” in Laser Interferometry X: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE4101, 46–55 (2000). [CrossRef]
  26. B. Apter, U. Efron, E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited