OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 355–360

Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching

Akio Mizutani, Hisao Kikuta, and Koichi Iwata  »View Author Affiliations

JOSA A, Vol. 22, Issue 2, pp. 355-360 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical switching effects of a guided-mode resonant grating (GMRG) with a Kerr medium have been simulated with the nonlinear finite differential time domain (FDTD) method. An asymmetric waveguide grating with a large second spatial harmonic component has been proposed for the optical switch. Resonant reflection occurs at both of the band-edge wavelengths. These wavelengths are used for the pump light and the probe light. The enhanced electric field of the pump light changes the resonant wavelength for the probe light as a result of the Kerr effect. We designed the GMRG with resonant wavelengths of 1489.6 and 1630 nm, which were used for the pump light and the probe light, respectively. When the grating material has a third-order susceptibility χ(3) of 8.5×10-10 esu, the transmittance of the probe light changes from 0 to 80% by increasing the intensity of the pump light from 0 to 60 kW/mm2.

© 2005 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(260.5740) Physical optics : Resonance

Original Manuscript: March 24, 2004
Revised Manuscript: July 27, 2004
Manuscript Accepted: August 31, 2004
Published: February 1, 2005

Akio Mizutani, Hisao Kikuta, and Koichi Iwata, "Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching," J. Opt. Soc. Am. A 22, 355-360 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Pereira, P. Chak, J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444–446 (2003). [CrossRef] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  3. H. M. Gibbs, Photonic Crystals: Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).
  4. K. Koynov, N. Paraire, F. Bertrand, R. El Bermil, P. Dansas, “Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches,” J. Opt. A Pure Appl. Opt. 3, 26–33 (2001). [CrossRef]
  5. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  6. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  7. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998). [CrossRef]
  8. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996). [CrossRef] [PubMed]
  9. R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999). [CrossRef]
  10. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  11. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997). [CrossRef]
  12. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  13. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18, 1912–1928 (2001). [CrossRef]
  14. F. Lemarchand, S. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  15. A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003). [CrossRef]
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  17. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  18. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  19. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  20. T. Hattori, T. Kobayashi, “Femtosecond dephasing in a polydiacetylene film measured by degenerate four-wave mixing with an incoherent nanosecond laser,” Chem. Phys. Lett. 133, 230–234 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited