OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 361–369

Beam dynamics of two modes propagating along the optic axis in a uniaxial crystal

S. R. Seshadri  »View Author Affiliations

JOSA A, Vol. 22, Issue 2, pp. 361-369 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Gaussian beam propagation in the direction of the optic axis of a uniaxial crystal is treated by the complex-source-point technique. At the input plane the electric field is linearly polarized. A particular superposition of the ordinary-mode and the extraordinary-mode beams is generated. The electrodynamics of the composite beam has features that are different from those of the two constituent beams. As a result of the anisotropy, on propagation, the cross-polarized component of the electric field is generated except along the beam axis; the cross section of the beam, which is circular at the input plane, becomes elliptical; and the mean squared width of the beam departs from the usual quadratic dependence on the distance from the waist in the direction of propagation.

© 2005 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

Original Manuscript: March 15, 2004
Revised Manuscript: July 28, 2004
Manuscript Accepted: August 27, 2004
Published: February 1, 2005

S. R. Seshadri, "Beam dynamics of two modes propagating along the optic axis in a uniaxial crystal," J. Opt. Soc. Am. A 22, 361-369 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960), pp. 315–324.
  2. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999).
  3. L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, Piscataway, N.J., 1994), pp. 740–820.
  4. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, N.J., 1984), Chaps. 4, 5, and 11.
  5. S. Y. Shin, L. B. Felsen, “Gaussian beams in anisotropic media,” Appl. Phys. 5, 239–250 (1974). [CrossRef]
  6. J. A. Fleck, M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73, 920–926 (1983). [CrossRef]
  7. M. Nazarathy, J. W. Goodman, “Diffraction transforms in homogeneous birefringent media,” J. Opt. Soc. Am. A 3, 523–531 (1986). [CrossRef]
  8. L. I. Perez, M. T. Garea, “Propagation of 2D and 3D Gaussian beams in an anisotropic uniaxial medium: vectorial and scalar treatment,” Optik 111, 297–306 (2000).
  9. J. J. Stamnes, V. Dhayalan, “Transmission of a two-dimensional Gaussian beam into a uniaxial crystal,” J. Opt. Soc. Am. A 18, 1662–1669 (2001). See also references cited in this paper. [CrossRef]
  10. A. Ciattoni, G. Cincotti, C. Palma, “Ordinary and extraordinary beams characterization in uniaxially anisotropic crystals,” Opt. Commun. 195, 55–61 (2001). [CrossRef]
  11. G. Cincotti, A. Ciattoni, C. Palma, “Hermite–Gauss beams in uniaxially anisotropic crystals,” IEEE J. Quantum Electron. 37, 1517–1524 (2001). [CrossRef]
  12. G. Cincotti, A. Ciattoni, C. Palma, “Laguerre–Gauss and Bessel–Gauss beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680–1688 (2002). [CrossRef]
  13. A. Ciattoni, G. Cincotti, C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19, 792–796 (2002). [CrossRef]
  14. A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18, 1656–1661 (2001). [CrossRef]
  15. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
  16. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751–760 (1976). [CrossRef]
  17. E. Heyman, L. B. Felsen, “Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics,” J. Opt. Soc. Am. A 18, 1588–1611 (2001). [CrossRef]
  18. H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950). See Eqs. (3.1). [CrossRef]
  19. S. R. Seshadri, Fundamentals of Transmission Lines and Electromagnetic Fields (Addison-Wesley, Reading, Mass., 1971). See Eqs. (9.2.1)–(9.2.6) and (9.10.1)–(9.10.5).
  20. S. R. Seshadri, “Basic elliptical Gaussian wave and beam in a uniaxial crystal,” J. Opt. Soc. Am. A 20, 1818–1826 (2003). [CrossRef]
  21. S. Y. Shin, L. B. Felsen, “Gaussian beam modes by multipoles with complex source points,” J. Opt. Soc. Am. 67, 699–700 (1977). [CrossRef]
  22. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beams,” J. Opt. Soc. Am. A 16, 1373–1380 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited