OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 370–376

Three-dimensional metallo-dielectric photonic crystals with cubic symmetry as stacks of two-dimensional screens

J. Shah, K. D. Möller, H. Grebel, O. Sternberg, and J. M. Tobias  »View Author Affiliations


JOSA A, Vol. 22, Issue 2, pp. 370-376 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000370


View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallo-dielectric photonic crystals with cubic symmetries have been studied here both experimentally and theoretically in the millimeter wavelength region (15–60 mm). In a direct analogy to linear systems, we considered the three-dimensional lattices as a stack of two-dimensional resonating screens. The overall three-dimensional structure was introduced in the calculation through a structural phase. Such an approach proved useful in understanding the related mode propagation and guided us in a study of the transition between cubic and centered body cubic symmetries.

© 2005 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(290.3770) Scattering : Long-wave scattering

History
Original Manuscript: April 23, 2004
Revised Manuscript: July 30, 2004
Manuscript Accepted: August 31, 2004
Published: February 1, 2005

Citation
J. Shah, K. D. Möller, H. Grebel, O. Sternberg, and J. M. Tobias, "Three-dimensional metallo-dielectric photonic crystals with cubic symmetry as stacks of two-dimensional screens," J. Opt. Soc. Am. A 22, 370-376 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-2-370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Tobias, M. Ajgaonkar, H. Grebel, “Morphology-dependent transmission through photonic crystals,” J. Opt. Soc. Am. B 19, 385–391 (2002). [CrossRef]
  2. H. Grebel, J. Tobias, “Study of hybrid metal-dielectric photonic crystals,” presented at the Quantum Electronics and Laser Science Conference, San Francisco, Calif., May 2002, paper QTuF1.
  3. H. Grebel, Z. Iqbal, A. Lan, “Detection of C60 using surface enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001). [CrossRef]
  4. J. M. Tobias, H. Grebel, “Self-imaging in photonic crystals in a subwavelength range,” Opt. Lett. 24, 1660–1662 (1999). [CrossRef]
  5. S. Vijayalakshmi, H. Grebel, G. Yaglioglu, R. Dorsinville, C. W. White, “Nonlinear dispersion properties of sub-wavelength photonic crystals,” Appl. Phys. Lett. 78, 1754–1756 (2001). [CrossRef]
  6. A. Serpenguzel, “Transmission characteristics of metallodielectric photonic crystals and resonantors,” IEEE Microwave Wireless Compon. Lett. 134, 134–136 (2002). [CrossRef]
  7. J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996). [CrossRef]
  8. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, “All metallic three-dimensional photonic crystals with a large infrared band-gap,” Nature 417, 52–55 (2002). [CrossRef] [PubMed]
  9. K. D. Möller, O. Sternberg, H. Grebel, K. P. Stewart, “Near-field effects in multilayer inductive metal meshes,” Appl. Opt. 41, 1942–1948 (2002). [CrossRef] [PubMed]
  10. J. Li, L. Zhou, C. T. Chan, P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901-1–083901-4 (2003). [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, UK, 1964).
  12. K. D. Möller, O. Sternberg, H. Grebel, P. Lalanne, “Thick inductive cross shaped metal meshes,” J. Appl. Phys. 91, 9461–1965 (2002). [CrossRef]
  13. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  14. O. Sternberg, “Resonances of periodic metal-dielectric meshes in the infrared wavelength region,” Ph.D. thesis (New Jersey Institute of Technology, Newark N.J. 07102, 2002<).
  15. “Micro-Stripes Program” by Flomerics, Inc., 275 Turnpike Road, Suite 100, Southborough, Mass., 01772.
  16. K. D. Möller, W. G. Rothschild, Far Infrared Spectroscopy (Wiley, New York, 1971).
  17. R. Ulrich, “Mode of propagation on an open periodic waveguide for far infrared,” Microwave Symposia Series, Vol. XXIII (Polytechnique Press, Brooklyn, N.Y., 1974).
  18. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  19. L. B. Whitbourn, R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at dielectric boundary,” Appl. Opt. 24, 217–220 (1985). [CrossRef]
  20. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited