OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 504–513

Anisoplanatic deconvolution of adaptive optics images

Ralf C. Flicker and François J. Rigaut  »View Author Affiliations

JOSA A, Vol. 22, Issue 3, pp. 504-513 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified method for maximum-likelihood deconvolution of astronomical adaptive optics images is presented. By parametrizing the anisoplanatic character of the point-spread function (PSF), a simultaneous optimization of the spatially variant PSF and the deconvolved image can be performed. In the ideal case of perfect information, it is shown that the algorithm is able to perfectly cancel the adverse effects of anisoplanatism down to the level of numerical precision. Exploring two different modes of deconvolution (using object bases of pixel values or stellar field parameters), we then quantify the performance of the algorithm in the presence of Poissonian noise for crowded and noncrowded stellar fields.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.1830) Image processing : Deconvolution

Original Manuscript: April 7, 2004
Manuscript Accepted: September 8, 2004
Published: March 1, 2005

Ralf C. Flicker and François J. Rigaut, "Anisoplanatic deconvolution of adaptive optics images," J. Opt. Soc. Am. A 22, 504-513 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982). [CrossRef]
  2. R. J. Sasiela, “Strehl ratios with various types of anisoplanatism,” J. Opt. Soc. Am. A 9, 1398–1406 (1992). [CrossRef]
  3. E. Diolati, O. Bendinelli, D. Bonaccini, L. M. Close, D. G. Currie, G. Parmeggiani, “Starfinder: an IDL GUI-based code to analyze crowded fields with isoplanatic correcting PSF fitting,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 879–887 (2000). [CrossRef]
  4. T. Fusco, J.-M. Conan, L. M. Mugnier, V. Michau, G. Rousset, “Characterization of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution,” Astron. Astrophys., Suppl. Ser. 142, 149–156 (2000). [CrossRef]
  5. T. Fusco, L. M. Mugnier, J. Conan, F. Marchis, G. Chauvin, G. Rousset, A. Lagrange, D. Mouillet, F. J. Roddier, “Deconvolution of astronomical images obtained from ground-based telescopes with adaptive optics,” in Adaptive Optical System Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 1065–1075 (2003). [CrossRef]
  6. T. Lauer, “Deconvolution with a spatially-variant PSF,” in Astronomical Data Analysis II., J.-L. Starck, F. D. Murtagh, eds., Proc. SPIE4847, 167–173 (2002). [CrossRef]
  7. C. Alard, R. H. Lupton, “A method for optimal image subtraction,” Astrophys. J. 503, 325 (1998). [CrossRef]
  8. W. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  9. L. B. Lucy, “An iterative technique for rectification of observed distributions,” Astrophys. J. 79, 745–754 (1974).
  10. E. Thiébaut, J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  11. R. G. Lane, “Methods for maximum-likelihood deconvolution,” J. Opt. Soc. Am. A 13, 1992–1998 (1996). [CrossRef]
  12. P. Magain, F. Courbin, S. Sohy, “Deconvolution with correct sampling,” Astrophys. J. 494, 472–477 (1998). [CrossRef]
  13. T. Fusco, J.-P. Véran, J.-M. Conan, L. M. Mugnier, “Myopic deconvolution method for adaptive optics images of stellar fields,” Astron. Astrophys., Suppl. Ser. 134, 193–200 (1999). [CrossRef]
  14. F. J. Rigaut, J. Veran, O. Lai, “Analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998). [CrossRef]
  15. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, New York, 2000).
  16. R. C. Flicker, F. J. Rigaut, “Hokupa’a anisoplanatism study and Mauna Kea turbulence characterization,” Publ. Astron. Soc. Pac. 114, 1006–1015 (2002). [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited