OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 3 — Mar. 1, 2005
  • pp: 552–560

High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography

Nate J. Kemp, Jesung Park, Haitham N. Zaatari, H. Grady Rylander, and Thomas E. Milner  »View Author Affiliations


JOSA A, Vol. 22, Issue 3, pp. 552-560 (2005)
http://dx.doi.org/10.1364/JOSAA.22.000552


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-sensitive optical coherence tomography provides high-resolution cross-sectional characterization of birefringence in turbid media. Weakly birefringent biological tissues such as the retinal nerve fiber layer (RNFL) require advanced speckle noise reduction for high-sensitivity measurement of form birefringence. We present a novel method for high-sensitivity birefringence quantification by using enhanced polarization-sensitive optical coherence tomography (EPS-OCT) and introduce the polarimetric signal-to-noise ratio, a mathematical tool for analyzing speckle noise in polarimetry. Multiple incident polarization states and nonlinear fitting of normalized Stokes vectors allow determination of retardation with ±1° uncertainty with invariance to unknown unitary polarization transformations. Results from a weakly birefringent turbid film and in vivo primate RNFL are presented. In addition, we discuss the potential of EPS-OCT for noninvasive quantification of intracellular filamentous nanostructures, such as neurotubules in the RNFL that are lost during the progression of glaucoma.

© 2005 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

History
Original Manuscript: July 6, 2004
Revised Manuscript: September 27, 2004
Manuscript Accepted: October 1, 2004
Published: March 1, 2005

Citation
Nate J. Kemp, Jesung Park, Haitham N. Zaatari, H. Grady Rylander, and Thomas E. Milner, "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 22, 552-560 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-3-552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  3. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef] [PubMed]
  4. B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001). [CrossRef] [PubMed]
  5. S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002). [CrossRef] [PubMed]
  6. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001). [CrossRef] [PubMed]
  7. R. E. Ziemer, W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 5th ed. (Wiley, New York, 2002).
  8. W. A. Shurcliff, S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964).
  9. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).
  10. R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
  11. A. F. Fercher, P. F. Steeger, “First-order statistics of Stokes parameters in speckle fields,” Opt. Acta 28, 448–448 (1981). [CrossRef]
  12. P. F. Steeger, A. F. Fercher, “Experimental investigation of the first-order statistics of Stokes parameters in speckle fields,” Opt. Acta 29, 1395–1400 (1982). [CrossRef]
  13. D. Eliyahu, “Vector statistics of correlated Gaussian fields,” Phys. Rev. E 47, 2881–2892 (1993). [CrossRef]
  14. D. Eliyahu, “Statistics of Stokes variables for correlated Gaussian fields,” Phys. Rev. E 50, 2381–2384 (1994). [CrossRef]
  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–688.
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef] [PubMed]
  17. B. Cense, N. A. Nassif, T. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004). [CrossRef] [PubMed]
  18. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1959).
  19. Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997). [CrossRef] [PubMed]
  20. D. J. MacDonald, H. M. Finlay, P. B. Canham, “Directional wall strength in saccular brain aneurysms from polarized light microscopy,” Ann. Biomed. Eng. 25, 533–542 (2000). [CrossRef]
  21. S. J. Matcher, C. P. Winlove, S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004). [CrossRef] [PubMed]
  22. R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74, 645–654 (1998). [CrossRef] [PubMed]
  23. R. Oldenbourg, T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989). [CrossRef] [PubMed]
  24. O. Wiener, “Die Theorie des Mischkorpers für das Feld der stationaren Stromung,” Abh. Math.-Phys. Kl. Koniglich Saechs. Akad. Wiss. 32, 509–604 (1912).
  25. W. L. Bragg, A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6, 865–867 (1953). [CrossRef]
  26. H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence: demonstration of the applicability of Wiener’s equation,” J. Cell Biol. 67, 501–517 (1975). [CrossRef] [PubMed]
  27. L. A. Amos, “Structure of microtubules,” in Microtubules, K. Roberts, J. S. Hyams, eds. (Academic, London, 1979), pp. 1–64.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited