OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1447–1452

Conditions for polarization elements to be dichroic and birefringent

Sergey N. Savenkov, Oleksiy I. Sydoruk, and Ranjan S. Muttiah  »View Author Affiliations


JOSA A, Vol. 22, Issue 7, pp. 1447-1452 (2005)
http://dx.doi.org/10.1364/JOSAA.22.001447


View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization of light when it passes through optical media can change as a result of change in the amplitude (dichroism) or phase shift (birefringence) of the electric vector. The anisotropic properties of media can be determined from these two optical features. We derive the conditions required for polarization elements to be dichroic and birefringent. Our derivation starts from commonly accepted assumptions for dichroism and birefringence. Our main conclusions are that (i) the generalized Jones matrix for dichroic elements has in general nonorthogonal eigenpolarizations and (ii) in the general case, the birefringent and dichroic properties of polarization elements have no direct association with the corresponding phase and dichroic polar forms derived in the polar decomposition of the polarization elements’ Jones matrices.

© 2005 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

History
Original Manuscript: November 18, 2004
Manuscript Accepted: January 5, 2005
Published: July 1, 2005

Citation
Sergey N. Savenkov, Ranjan S. Muttiah, and Oleksiy I. Sydoruk, "Conditions for polarization elements to be dichroic and birefringent," J. Opt. Soc. Am. A 22, 1447-1452 (2005)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-22-7-1447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M.A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).
  2. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962). [CrossRef]
  3. R. C. Jones, “A new calculus for the treatment of optical systems. IV,” J. Opt. Soc. Am. 32, 486–493 (1941). [CrossRef]
  4. S.-Y. Lu, R. Chipman, “Interpretation of the Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  5. S.-Y. Lu, R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994). [CrossRef]
  6. Sudha, A. V.Gopala Rao, “Polarization elements: a group-theoretical study,” J. Opt. Soc. Am. A 18, 3130–3134 (2001). [CrossRef]
  7. S. Pancharatnam, “The propagation of light in absorbing biaxial crystals—I. Theoretical,” Proc. Indian Acad. Sci. Sect. A 42, 89–109 (1955).
  8. S. Pancharatnam, “The propagation of light in absorbing biaxial crystals—II. Experimental,” Proc. Indian Acad. Sci. Sect. A Sect. A 42, 235–248 (1955).
  9. H. de Lang, “Polarization properties of optical resonators passive and active,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1966).
  10. L. C. Meira-Belo, U. A. Leitao, “Singular polarization eigenstates in anisotropic stratified structures,” Appl. Opt. 39, 2695–2704 (2000). [CrossRef]
  11. J. F. Mosino, O. Barbosa-Garcia, M. A. Meneses-Nava, L. A. Diaz-Torres, E. De la Rosa-Cruz, J. T. Vega-Duran, “Anisotropic media with orthogonal eigenpolarizations,” Pure Appl. Opt. 4, 419–423 (2002). [CrossRef]
  12. P. Lankaster, M. Tismenetsky, The Theory of Matrices, 2nd ed. (Academic, San Diego, Calif., 1985).
  13. C. Whitney, “Pauli-algebraic operators in polarization optics,” J. Opt. Soc. Am. 61, 1207–1213 (1971). [CrossRef]
  14. J. J. Gil, E. Bernabeu, “Obtainment of the polarizing and retardation parameters of non-depolarizing optical system from polar decomposition of its Mueller matrix,” Optik (Stuttgart) 76, 67–71 (1987).
  15. H. Hurwitz, R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941). [CrossRef]
  16. R. A. Chipman, “Polarimetry,” in Handbook of Optics, Vol. II (McGraw Hill, New York, 1995).
  17. O. G. Vlokh, O. S. Kushnir, “Specific features of propagation of polarized light in purely dichroic crystals,” Opt. Spectrosc. 80, 71–73 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited