Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiresolution phase retrieval in the Fresnel region by use of wavelet transform

Not Accessible

Your library or personal account may give you access

Abstract

A multiresolution (multiscale) analysis based on wavelet transform is applied to the problem of optical phase retrieval from the intensity measured in the in-line geometry (lens-free). The transport-of-intensity equation and the Fresnel diffraction integral are approximated in terms of a wavelet basis. A solution to the phase retrieval problem can be efficiently found in both cases using the multiresolution concept. Due to the hierarchical nature of wavelet spaces, wavelets are well suited to multiresolution methods that contain multigrid algorithms. Appropriate wavelet bases for the best solution approximation are discussed. The proposed approach reduces the computational complexity and accelerates the convergence of the solution. It is robust and reliable, and successful on both simulated and experimental images obtained with hard x rays.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase retrieval in the Fresnel transform system: a recursive algorithm

Wen-Xiang Cong, Nan-Xian Chen, and Ben-Yuan Gu
J. Opt. Soc. Am. A 16(7) 1827-1830 (1999)

Fourier-wavelet regularization of phase retrieval in x-ray in-line phase tomography

Max Langer, Peter Cloetens, and Françoise Peyrin
J. Opt. Soc. Am. A 26(8) 1876-1881 (2009)

Nonlinear approaches for the single-distance phase retrieval problem involving regularizations with sparsity constraints

Valentina Davidoiu, Bruno Sixou, Max Langer, and Francoise Peyrin
Appl. Opt. 52(17) 3977-3986 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.