Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effective-medium theory for finite-size aggregates

Not Accessible

Your library or personal account may give you access

Abstract

We propose an effective-medium theory for random aggregates of small spherical particles that accounts for the finite size of the embedding volume. The technique is based on the identification of the first two orders of the Born series within a finite volume for the coherent field and the effective field. Although the convergence of the Born series requires a finite volume, the effective constants that are derived through this identification are shown to admit of a large-scale limit. With this approach we recover successively, and in a simple manner, some classical homogenization formulas: the Maxwell Garnett mixing rule, the effective-field approximation, and a finite-size correction to the quasi-crystalline approximation (QCA). The last formula is shown to coincide with the usual low-frequency QCA in the limit of large volumes, while bringing substantial improvements when the dimension of the embedding medium is of the order of the probing wavelength. An application to composite spheres is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids

Chi O. Ao and Jin A. Kong
J. Opt. Soc. Am. A 19(6) 1145-1156 (2002)

Effective medium theories for irregular fluffy structures: aggregation of small particles

Nikolai V. Voshchinnikov, Gorden Videen, and Thomas Henning
Appl. Opt. 46(19) 4065-4072 (2007)

Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries

L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner
J. Opt. Soc. Am. A 12(8) 1772-1781 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (86)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved