OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1897–1907

Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography

Peter H. Tomlins and Ruikang K. Wang  »View Author Affiliations

JOSA A, Vol. 23, Issue 8, pp. 1897-1907 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The rapid development in the field of optical coherence tomography has demanded increasingly sophisticated numerical models to enable the interpretation of image data and extract quantitative results. We use a matrix formulation of Fresnel’s equations for multilayered media to extract layer-dependent thickness and refractive index directly from Fourier domain optical coherence tomography spectrograms. An eigenanalysis spectral decomposition approach is used to constrain the least squares fitting algorithm, avoiding the need for initial estimates of the parameter values. We demonstrate this novel quantitative analysis approach by using a multilayered phantom and show good agreement with the known layer parameter values. This approach introduces a powerful tool for the analysis of layer-dependent optical properties that could have an important role in the differentiation of healthy and diseased tissue.

© 2006 U.S. Government

OCIS Codes
(100.2960) Image processing : Image analysis
(100.3190) Image processing : Inverse problems
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.3030) Scattering : Index measurements
(290.3200) Scattering : Inverse scattering

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 2, 2005
Revised Manuscript: March 8, 2006
Manuscript Accepted: March 14, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Peter H. Tomlins and Ruikang K. Wang, "Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography," J. Opt. Soc. Am. A 23, 1897-1907 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-l60 (1987). [CrossRef] [PubMed]
  3. E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993). [CrossRef] [PubMed]
  4. N. Nassif, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  5. L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000). [CrossRef] [PubMed]
  6. S. A. Boppart, "Optical coherence tomography: technology and applications for neuroimaging," Psychophysiology 40, 529-541 (2003). [CrossRef] [PubMed]
  7. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997). [CrossRef] [PubMed]
  8. G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  9. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004). [CrossRef] [PubMed]
  10. Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004). [CrossRef] [PubMed]
  11. J. P. Dunkers, M. T. Cicerone, and N. R. Washburn, "Collinear optical coherence and confocal microscopies for tissue engineering," Opt. Express 11, 3074-3079 (2003). [CrossRef] [PubMed]
  12. C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004). [CrossRef] [PubMed]
  13. Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005). [CrossRef]
  14. E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005). [CrossRef]
  15. J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999). [CrossRef]
  16. J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001). [CrossRef]
  17. P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005). [CrossRef]
  18. J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  19. R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt. 47, 103-120 (2000).
  20. L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000). [CrossRef]
  21. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, "Determination of optical scattering properties of highly-scattering media in optical coherence tomography images," Opt. Express 12, 249-259 (2004). [CrossRef] [PubMed]
  22. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle," Opt. Express 10, 397-404 (2002). [PubMed]
  23. H. Ding, J. Q. Lu, K. M. Jacobs, and X.-H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005). [CrossRef]
  24. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995). [CrossRef] [PubMed]
  25. A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000). [CrossRef] [PubMed]
  26. R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002). [CrossRef] [PubMed]
  27. O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005). [CrossRef]
  28. P. H. Tomlins and R. K. Wang, "The potential of optical coherence tomography for geometric analysis and refractive index measurement of three dimensional structures," in Optical Fibre Measurement Conference (National Physical Laboratory, 2005), Vol. 7, pp. 129-133.
  29. G. K. Smyth, "Employing symmetry constraints for improved frequency estimation by eigenanalysis methods," Technometrics 42, 277-289 (2000). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  33. M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005). [CrossRef]
  34. P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).
  35. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002). [CrossRef]
  36. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  37. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  38. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, 1985).
  39. G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).
  40. R. Prony, "Essai éxperimental et analytique," J. Ec. Polytech. (Paris) 2, 24-76 (1795).
  41. http://www.statsci.org/s/pronyfre.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited