Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical study of near-field optical storage with a solid immersion lens

Not Accessible

Your library or personal account may give you access

Abstract

Both the reflection inside a hemisphere solid immersion lens (SIL) and the reflection inside the gap between the SIL and the optical recording medium are considered. The near-field SIL imaging theory for high numerical aperture is developed by using the vector diffraction and thin-film optics. Numerical results show that the spot size, Strehl ratio, and sidelobe intensity have an oscillatory behavior with the change of thickness of the air gap, which results from the interference effect of the transmitted field. We find that for smaller spot size, the Strehl ratio is smaller but the sidelobe intensity is larger. A certain thickness of air gap is useful for optical storage, which is less than 63nm for the system in the simulated examples.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical field study of near-field optical recording with a solid immersion lens

Feng Guo, T. E. Schlesinger, and Daniel D. Stancil
Appl. Opt. 39(2) 324-332 (2000)

Design of high-performance supersphere solid immersion lenses

Yaoju Zhang
Appl. Opt. 45(19) 4540-4546 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved