OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 50–59

Image description with generalized pseudo-Zernike moments

Ting Xia, Hongqing Zhu, Huazhong Shu, Pascal Haigron, and Limin Luo  »View Author Affiliations

JOSA A, Vol. 24, Issue 1, pp. 50-59 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new set, to our knowledge, of orthogonal moment functions for describing images is proposed. It is based on the generalized pseudo-Zernike polynomials that are orthogonal on the unit circle. The generalized pseudo-Zernike polynomials are scaled to ensure numerical stability, and some properties are discussed. The performance of the proposed moments is analyzed in terms of image reconstruction capability and invariant character recognition accuracy. Experimental results demonstrate the superiority of generalized pseudo-Zernike moments compared with pseudo-Zernike and Chebyshev–Fourier moments in both noise-free and noisy conditions.

© 2006 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition
(100.5760) Image processing : Rotation-invariant pattern recognition

ToC Category:
Image Processing

Original Manuscript: September 30, 2005
Revised Manuscript: June 29, 2006
Manuscript Accepted: July 31, 2006

Ting Xia, Hongqing Zhu, Huazhong Shu, Pascal Haigron, and Limin Luo, "Image description with generalized pseudo-Zernike moments," J. Opt. Soc. Am. A 24, 50-59 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Prokop and A. P. Reeves, 'A survey of moment-based techniques for unoccluded object representation and recognition,' Comput. Vis. Graph. Image Process. 54, 438-460 (1992).
  2. M. K. Hu, 'Visual pattern recognition by moment invariants,' IRE Trans. Inf. Theory IT-8, 179-187 (1962).
  3. S. Dudani, K. Breeding, and R. McGhee, 'Aircraft identification by moment invariants,' IEEE Trans. Comput. 26, 39-45 (1977). [CrossRef]
  4. S. O. Belkasim, M. Shridhar, and M. Ahmadi, 'Pattern recognition with moment invariants: a comparative study and new results,' Pattern Recogn. 24, 1117-1138 (1991). [CrossRef]
  5. V. Markandey and R. J. P. Figueiredo, 'Robot sensing techniques based on high-dimensional moment invariants and tensor,' IEEE Trans. Rob. Autom. 8, 186-195 (1992). [CrossRef]
  6. M. R. Teague, 'Image analysis via the general theory of moments,' J. Opt. Soc. Am. 70, 920-930 (1980). [CrossRef]
  7. C. H. Teh and R. T. Chin, 'On image analysis by the methods of moments,' IEEE Trans. Pattern Anal. Mach. Intell. 10, 496-513 (1988). [CrossRef]
  8. Z. L. Ping, R. G. Wu, and Y. L. Sheng, 'Image description with Chebyshev-Fourier moments,' J. Opt. Soc. Am. A 19, 1748-1754 (2002). [CrossRef]
  9. Y. L. Sheng and L. X. Shen, 'Orthogonal Fourier-Mellin moments for invariant pattern recognition,' J. Opt. Soc. Am. A 11, 1748-1757 (1994). [CrossRef]
  10. R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image Analysis: Theory and Application (World Scientific, 1998). [CrossRef]
  11. A. Wünsche, 'Generalized Zernike or disc polynomials,' J. Comput. Appl. Math. 174, 135-163 (2005). [CrossRef]
  12. C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables (Cambridge U. Press, 2001). [CrossRef]
  13. C. W. Chong, P. Raveendran, and R. Mukundan, 'The scale invariants of pseudo-Zernike moments,' Pattern Anal. Appl. 6, 176-184 (2003). [CrossRef]
  14. C. W. Chong, P. Raveendran, and R. Mukundan, 'A comparative analysis of algorithms for fast computation of Zernike moments,' Pattern Recogn. 36, 731-742 (2003). [CrossRef]
  15. S. X. Liao and M. Pawlak, 'On image analysis by moments,' IEEE Trans. Pattern Anal. Mach. Intell. 18, 254-266 (1996). [CrossRef]
  16. S. X. Liao and M. Pawlak, 'On the accuracy of Zernike moments for image analysis,' IEEE Trans. Pattern Anal. Mach. Intell. 20, 1358-1364 (1998). [CrossRef]
  17. J. Flusser, 'On the independence of rotation moment invariants,' Pattern Recogn. 33, 1405-1410 (2000). [CrossRef]
  18. P. T. Yap, P. Raveendran, and S. H. Ong, 'Image analysis by Krawtchouk moments,' IEEE Trans. Image Process. 12, 1367-1377 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited