OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 3517–3529

Properties of coherence-gated wavefront sensing

Markus Rueckel and Winfried Denk  »View Author Affiliations


JOSA A, Vol. 24, Issue 11, pp. 3517-3529 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003517


View Full Text Article

Acrobat PDF (1084 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherence-gated wavefront sensing (CGWS) allows the determination of wavefront aberrations in strongly scattering tissue and their correction by adaptive optics. This allows, e.g., the restoration of the diffraction limit in light microscopy. Here, we develop a model, based on ray tracing of ballistic light scattered from a set of discrete scatterers, to characterize CGWS performance as it depends on coherence length, scatterer density, coherence-gate position, and polarization. The model is evaluated by using Monte Carlo simulation and verified against experimental measurements. We show, in particular, that all aberrations needed for adaptive wavefront restoration are correctly sensed if circularly polarized light is used.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 2, 2007
Manuscript Accepted: August 24, 2007
Published: October 17, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Markus Rueckel and Winfried Denk, "Properties of coherence-gated wavefront sensing," J. Opt. Soc. Am. A 24, 3517-3529 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-11-3517


Sort:  Year  |  Journal  |  Reset

References

  1. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, 'Adaptive aberration correction in a confocal microscope,' Proc. Natl. Acad. Sci. U.S.A. 99, 5788-5792 (2002). [CrossRef]
  2. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, 'Adaptive aberration correction in a two-photon microscope,' J. Microsc. 200, 105-108 (2000). [CrossRef]
  3. P. N. Marsh, D. Burns, and J. M. Girkin, 'Practical implementation of adaptive optics in multiphoton microscopy,' Opt. Express 11, 1123-1130 (2003).
  4. M. Schwertner, M. J. Booth, and T. Wilson, 'Characterizing specimen induced aberrations for high NA adaptive optical microscopy,' Opt. Express 12, 6540--6552 (2004). [CrossRef]
  5. M. Rueckel, J. A. Mack-Bucher, and W. Denk, 'Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,' Proc. Natl. Acad. Sci. U.S.A. 103, 17137-17142 (2006).
  6. J. W. Hardy, 'Active optics: a new technology for the control of light (review article),' Proc. IEEE 66, 651-697 (1978).
  7. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, 'Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,' J. Microsc. 206, 65-71 (2002). [CrossRef]
  8. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, 'Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,' Microsc. Res. Tech. 67, 36-44 (2005). [CrossRef]
  9. M. Feierabend, M. Ruckel, and W. Denk, 'Coherence-gated wave-front sensing in strongly scattering samples,' Opt. Lett. 29, 2255-2257 (2004).
  10. D. Malacara, Optical Shop Testing (Wiley, 1992).
  11. R. V. Shack and B. C. Platt, 'Abstract. Production and use of a lenticular Hartmann screen,' J. Opt. Soc. Am. 61, 656-660 (1971).
  12. M. Rueckel and W. Denk, 'Coherence-gated wavefront sensing using a virtual Shack-Hartmann sensor,' Proc. SPIE 6306, 63060H (2006).
  13. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, 'Optical coherence tomography--principles and applications,' Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  14. J. M. Schmitt, 'Optical coherence tomography (OCT): A review,' IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  15. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, 'Multiple scattering in optical coherence tomography. I. Investigation and modeling,' J. Opt. Soc. Am. A 22, 1369-1379 (2005). [CrossRef]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991). [CrossRef]
  17. J. W. Goodman, Statistical Optics (Wiley, 2000).
  18. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, 'Cellular-automata method for phase unwrapping,' J. Opt. Soc. Am. A 4, 267-280 (1987).
  19. R. Gens, 'Two-dimensional phase unwrapping for radar interferometry: developments and new challenges,' Int. J. Remote Sens. 24, 703-710 (2003).
  20. C. W. Chen and H. A. Zebker, 'Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,' J. Opt. Soc. Am. A 17, 401-414 (2000). [CrossRef]
  21. R. Cubalchini, 'Modal wavefront estimation from phase derivative measurements,' J. Opt. Soc. Am. 69, 973-977 (1979).
  22. N. Wiener, 'Generalized harmonic analysis,' Acta Math. 55, 117-258 (1930). [CrossRef]
  23. A. Khintchine, 'Correlation theories of stationary stochastic processes,' Math. Ann. 109, 604-615 (1934). [CrossRef]
  24. Q. Lu, X. S. Gan, M. Gu, and Q. M. Luo, 'Monte Carlo modeling of optical coherence tomography imaging through turbid media,' Appl. Opt. 43, 1628-1637 (2004). [CrossRef]
  25. M. Mansuripur, 'Distribution of light at and near the focus of high-numerical-aperture objectives,' J. Opt. Soc. Am. A 3, 2086-2093 (1986).
  26. C. F. Bohren and D. R. Huffmann, Absorption and Scattering by Small Particles (Wiley, 1983).
  27. A. E. Siegman, Lasers (University Science, 1986).
  28. R. J. Noll, 'Zernike polynomials and atmospheric-turbulence,' J. Opt. Soc. Am. 66, 207-211 (1976).
  29. N. Shvartsman and I. Freund, 'Vortices in random wave-fields--nearest-neighbor anticorrelations,' Phys. Rev. Lett. 72, 1008-1011 (1994). [CrossRef]
  30. D. L. Fried, 'Branch point problem in adaptive optics,' J. Opt. Soc. Am. A 15, 2759-2768 (1998). [CrossRef]
  31. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).
  32. J. J. Zhu, J. A. Esteban, Y. Hayashi, and R. Malinow, 'Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity,' Nat. Neurosci. 3, 1098-1106 (2000).
  33. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  34. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, 'Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,' Appl. Opt. 37, 3586-3593 (1998).
  35. J. M. Schmitt and G. Kumar, 'Optical scattering properties of soft tissue: a discrete particle model,' Appl. Opt. 37, 2788-2797 (1998).
  36. M. J. Booth, M. Schwertner, and T. Wilson, 'Specimen-induced aberrations and adaptive optics for microscopy,' Proc. SPIE 5894, 589403 (2005).
  37. G. Mie, 'Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,' Ann. Phys. 25, 377-445 (1908). [CrossRef]
  38. M. Rueckel and W. Denk, 'Polarization effects in coherence-gated wave-front sensing,' in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings (CD-ROM), Technical Digest (Optical Society of America, 2005), paper AThC4.
  39. E. Hecht, Optics (Addison-Wesley, 1990).
  40. S. Inoue and W. L. Hyde, 'Studies on depolarization of light at microscope lens surfaces. 2. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,' J. Biophys. Biochem. Cytol. 3, 831-838 (1957).
  41. K. Bahlmann and S. W. Hell, 'Depolarization by high aperture focusing,' Appl. Phys. Lett. 77, 612-614 (2000). [CrossRef]
  42. Y. T. Pan, R. Birngruber, and R. Engelhardt, 'Contrast limits of coherence-gated imaging in scattering media,' Appl. Opt. 36, 2979-2983 (1997).
  43. J. D. Wilson and T. H. Foster, 'Mie theory interpretations of light scattering from intact cells,' Opt. Lett. 30, 2442-2444 (2005). [CrossRef]
  44. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, 'Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,' J. Biomed. Opt. 7, 378-387 (2002). [CrossRef]
  45. R. Drezek, A. Dunn, and R. Richards-Kortum, 'Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,' Appl. Opt. 38, 3651-3661 (1999).
  46. W. Denk, J. H. Strickler, and W. W. Webb, 'Two-photon laser scanning fluorescence microscopy,' Science 248, 73-76 (1990). [CrossRef]
  47. A. Rohrbach and E. H. K. Stelzer, 'Three-dimensional position detection of optically trapped dielectric particles,' J. Appl. Phys. 91, 5474-5488 (2002). [CrossRef]
  48. R. C. Jones, 'A new calculus for the treatment of optical systems I. Description and discussion of the calculus,' J. Opt. Soc. Am. 31, 488-493 (1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited