OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 856–865

Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface

Sudarshan R. Nelatury, John A. Polo, Jr., and Akhlesh Lakhtakia  »View Author Affiliations

JOSA A, Vol. 24, Issue 3, pp. 856-865 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dispersion equation for surface waves—with simple transverse exponential decay at the interface of identical biaxial crystals with a relative twist about the axis normal to the interface and propagating along a bisector of the angle between the crystallographic configurations on either side of the interface—has several solutions of which only one is physical. The selected type of surface wave is possible only for a restricted range of the twist angle, which depends on the ratio of the maximum and the minimum of the principal refractive indexes and the angle between the optic ray axes.

© 2007 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

Original Manuscript: January 3, 2006
Revised Manuscript: August 8, 2006
Manuscript Accepted: September 13, 2006
Published: February 14, 2007

Sudarshan R. Nelatury, John A. Polo, Jr., and Akhlesh Lakhtakia, "Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface," J. Opt. Soc. Am. A 24, 856-865 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. L. Torner, J. P. Torres, and D. Mihalache, "New type of guided waves in birefringent media," IEEE Photon. Technol. Lett. 5, 201-203 (1993). [CrossRef]
  4. J. Pendry, "Applied physics: enhanced: playing tricks with light," Science 10, 1687-1688 (1999). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  6. W.S. Weiglhofer and A. Lakhtakia, eds., Introduction to Complex Mediums for Optics and Electromagnetics (SPIE, 2003). [CrossRef]
  7. M. I. D'yakonov, "New type of electromagnetic wave propagating at an interface," Sov. Phys. JETP 67, 714-716 (1988).
  8. N. S. Averkiev and M. I. Dyakonov, "Electromagnetic waves localized at the interface of transparent anisotropic media," Opt. Spectrosc. 68, 653-655 (1990).
  9. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, "Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces," J. Opt. Soc. Am. A 15, 248-260 (1998). [CrossRef]
  10. A. N. Furs, V. M. Galynsky, and L. M. Barkovsky, "Surface polaritons in symmetry planes of biaxial crystals," J. Phys. A 38, 8083-8101 (2005). [CrossRef]
  11. A. N. Darinskiĭ, S. V. Biryukov, and M. Weihnacht, "The relation between crystallographic symmetry and the bidirectionality of SAW generation by IDT's," in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 2002), pp. 223-226.
  12. A. N. Darinskiĭ, S. V. Biryukov, and M. Weihnacht, "Fundamental frequency degeneracy of standing surface acoustic waves under metallic gratings on piezoelectric substrates," J. Acoust. Soc. Am. 112, 2003-2013 (2002). [CrossRef] [PubMed]
  13. A. N. Darinskiĭ, "Dispersionless polaritons on a twist boundary in optically uniaxial crystals," Crystallogr. Rep. 46, 842-844 (2001). [CrossRef]
  14. C. D. Gribble and A. J. Hall, Optical Mineralogy: Principles and Practice (UCL, 1993).
  15. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001). [CrossRef]
  16. M. Berry, R. Bhandari, and S. Klein, "Black plastic sandwiches demonstrating biaxial optical anisotropy," Eur. J. Phys. 20, 1-14 (1999). [CrossRef]
  17. B. Michel, "Recent developments in the homogenization of linear bianisotropic composite materials," in Electromagnetic Fields in Unconventional Materials and Structures, O.N.Singh and A.Lakhtakia, eds. (Wiley, 2000), pp. 39-82.
  18. T. G. Mackay and W. S. Weiglhofer, "Homogenization of biaxial composite materials: bianisotropic properties," J. Opt. A, Pure Appl. Opt. 3, 45-52 (2001). [CrossRef]
  19. W. S. Weiglhofer, "Constitutive characterization of simple and complex mediums," in Introduction to Complex Mediums for Optics and Electromagnetics, W.S.Weiglhofer and A.Lakhtakia, eds. (SPIE, 2003), pp. 27-61. [CrossRef]
  20. W. S. Weiglhofer and A. Lakhtakia, "On electromagnetic waves in biaxial bianisotropic media," Electromagnetics 19, 351-362 (1999). [CrossRef]
  21. If we write E=r-1=aI=+b(m̂1m̂2+m̂2m̂1), then the unit vectors m̂1 and m̂2 are parallel to the two optic axes of a biaxial dielectric material.
  22. Mineralogy Database, http://www.webmineral.com/.
  23. R. F. Wallis, "Optical properties associated with surface excitations of semiconductors," in Optical Properties of Semiconductors, M.Balkanski, ed. (Elsevier North-Holland, 1994), Vol. 2, pp. 1-31.
  24. There appears to be a typographical error in Darinskiĭ's publication [Ref. , Eq. (10)]. To make it consistent with our results and the author's own Fig. , it should read V2/Ve2=E]-[1−3sin2phiv+cos2phiv[1+4sin2phiv(E-−1)]½]/{2[1+(E]-−1)sin]2phiv][E]-cos]4phiv−sin]4phiv]}.
  25. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1981).
  26. C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, 20th ed. (Wiley, 1977), pp. 249-250.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited