OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2543–2549

Thin-film-based field penetration engineering for surface plasmon resonance biosensing

Soon Joon Yoon and Donghyun Kim  »View Author Affiliations

JOSA A, Vol. 24, Issue 9, pp. 2543-2549 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Penetration depth defines the measurable range in evanescent-wave-based sensing techniques such as surface plasmon resonance (SPR). We investigate penetration depth variation implemented with dielectric layers in a SPR sensing structure. The results show that the penetration depth can be controlled to increase or decrease depending on a specific configuration. Effective medium theory was introduced to describe the field penetration in dielectric multilayer designs. Comparison was made with the field penetration of a localized SPR structure based on periodic nanowires. The penetration depth variation in response to environmental changes was also explored.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 9, 2007
Manuscript Accepted: April 19, 2007
Published: July 19, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Soon Joon Yoon and Donghyun Kim, "Thin-film-based field penetration engineering for surface plasmon resonance biosensing," J. Opt. Soc. Am. A 24, 2543-2549 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Quail, J. G. Rako, and H. J. Simon, "Long-range surface-plasmon modes in silver and aluminum films," Opt. Lett. 8, 377-379 (1983). [CrossRef] [PubMed]
  2. A. W. Wark, H. J. Lee, and R. M. Corn, "Long-range surface plasmon resonance imaging for bioaffinity sensors," Anal. Chem. 77, 3904-3907 (2005). [CrossRef] [PubMed]
  3. K. Matsubara, S. Kawata, and S. Minami, "Multilayer system for a high-precision surface plasmon resonance sensor," Opt. Lett. 15, 75-77 (1990). [CrossRef] [PubMed]
  4. C.-H. Liao, C.-M. Lee, L.-B. Chang, and J.-H. Tsai, "Effects of a metal film and prism dielectric on properties of surface plasmon resonance in a multilayer system," Jpn. J. Appl. Phys., Part 1 36, 1105-1111 (1997). [CrossRef]
  5. J. van Gent, P. V. Lambeck, H. J. M. Kreuwel, G. J. Gerritsma, E. J. R. Sudholter, D. N. Reinhoudt, and T. J. A. Popma, "Optimization of a chemooptical surface plasmon resonance based sensor," Appl. Opt. 29, 2843-2849 (1990). [CrossRef] [PubMed]
  6. W. J. H. Bender, R. E. Dessy, M. S. Miller, and R. O. Claus, "Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition," Anal. Chem. 66, 963-970 (1994). [CrossRef]
  7. Y. Levy, "Étude du champ inhomogène obtenu par la réflexion totale d'une onde plane sur un système de couches minces," Nouv. Rev. Opt. Appl. 3, 25-30 (1972). [CrossRef]
  8. R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994). [CrossRef]
  9. P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, "Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack," Bioimaging 5, 1-8 (1997). [CrossRef]
  10. M. R. Malone, J.-F. Masson, S. Beaudoin, and K. S. Booksh, "Novel surface coatings for antibody attachment to surface plasmon resonance sensors," Proc. SPIE 6007, 36-45 (2005).
  11. R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006). [CrossRef] [PubMed]
  12. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, "Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Opt. Lett. 31, 1085-1087 (2006). [CrossRef] [PubMed]
  13. K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, "Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy," Biophys. J. 76, 509-516 (1999). [CrossRef] [PubMed]
  14. M. Hide, T. Tsutsui, H. Sato, T. Nishimura, K. Morimoto, S. Yamamoto, and K. Yoshizato, "Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor," Anal. Biochem. 302, 28-37 (2002). [CrossRef] [PubMed]
  15. R. E. Kunz and K. Cottier, "Optimizing integrated optical chips for label-free (bio-)chemical sensing," Anal. Bioanal. Chem. 384, 180-190 (2006). [CrossRef]
  16. J. A. Steyer and W. Almers, "A real-time view of life within 100 nm of the plasma membrane," Nat. Rev. Mol. Cell Biol. 2, 268-275 (2001). [CrossRef] [PubMed]
  17. K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, "Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device," J. Microsc. 211, 19-29 (2003). [CrossRef] [PubMed]
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  19. A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989), Chap. 2.
  20. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  21. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1985).
  22. D. Kim and S. J. Yoon, "Effective medium based analysis of nanowire-mediated localized surface plasmon resonance," Appl. Opt. 46, 872-880 (2007). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999), pp. 837-840.
  24. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  25. A. J. A. El-Haija, "Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique," J. Appl. Phys. 93, 2590-2594 (2003). [CrossRef]
  26. S. Moon and D. Kim, "Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals," J. Opt. Soc. Am. A 23, 199-207 (2006). [CrossRef]
  27. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006). [CrossRef]
  28. K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited