OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 219–224

Equal-frequency surface analysis of two-dimensional photonic crystals

G. Alagappan, X. W. Sun, and M. B. Yu  »View Author Affiliations

JOSA A, Vol. 25, Issue 1, pp. 219-224 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an analytical treatment of equal-frequency surface analysis of a two-dimensional photonic crystal. We first define the equal-frequency surface in terms of plane waves, which can be numerically evaluated. Then one- and two-plane-wave approximations are proposed, which consequently lead to analytical expressions of the equal-frequency surface. The approach presented is well suited to two-dimensional photonic crystals of weak dielectric modulation. For photonic crystals with a large modulation, the approach can be used to gain a general idea of the shape of the bands.

© 2008 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: July 31, 2007
Revised Manuscript: October 28, 2007
Manuscript Accepted: October 28, 2007
Published: December 20, 2007

G. Alagappan, X. W. Sun, and M. B. Yu, "Equal-frequency surface analysis of two-dimensional photonic crystals," J. Opt. Soc. Am. A 25, 219-224 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding The Flow of Light (Princeton, 1995), pp. 94-100.
  4. J. C. Knight, T. A. Birks, P., St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000). [CrossRef]
  6. B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998). [CrossRef]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998). [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  9. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  10. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  11. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  12. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 653152-3155 (1990). [CrossRef] [PubMed]
  13. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), Chap. 2.
  14. M. S. Li, S. T. Wu, and A.Yi-.G. Fuh, "Superprism phenomenon based on holographic polymer dispersed liquid crystal films," Appl. Phys. Lett. 88, 91109 (2006). [CrossRef]
  15. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004). [CrossRef]
  16. G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, "Tunable superprism and polarization splitting in a liquid crystal infiltrated two-dimensional photonic crystal made of silicon oxynitride," Opt. Lett. 31, 1109-1111 (2006). [CrossRef] [PubMed]
  17. Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89, 171101 (2001). [CrossRef]
  18. W. A. Harrison, "Fermi surface in aluminum," Phys. Rev. 116, 555-561 (1959). [CrossRef]
  19. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge U. Press, 1972), Chap. 3.
  20. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  21. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  22. C. Y. Liu and L. W. Chen, "Tunable band gap in a photonic crystal modulated by a nematic liquid crystal," Phys. Rev. B 72, 045133 (2005). [CrossRef]
  23. G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, "Symmetry properties of two-dimensional anisotropic photonic crystals," J. Opt. Soc. Am. A 23, 2002-2013 (2006). [CrossRef]
  24. G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, "Engineering the bandgap of a two-dimensional anisotropic photonic crystal," J. Opt. Soc. Am. B 23, 1478-1483 (2006). [CrossRef]
  25. H. Takeda and K. Yoshino, "Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals," Phys. Rev. E 67, 056607 (2003). [CrossRef]
  26. S. Gasiorowicz, Quantum Physics (Willey, 2003), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited