Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coherence effects in digital in-line holographic microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We analyze the effects of partial coherence in the image formation of a digital in-line holographic microscope (DIHM). The impulse response is described as a function of cross-spectral density of the light used in the space-frequency domain. Numerical simulation based on the applied model shows that a reduction in coherence of light leads to broadening of the impulse response. This is also validated by results from experiments wherein a DIHM is used to image latex beads using light with different spatial and temporal coherence.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital in-line holographic microscopy

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer
Appl. Opt. 45(5) 836-850 (2006)

3D image distortion problem in digital in-line holographic microscopy and its effective solution

Heejung Lee, Philjun Jeon, and Dugyoung Kim
Opt. Express 25(18) 21969-21980 (2017)

Partially coherent digital in-line holographic microscopy in characterization of a microscopic target

Tomi Pitkäaho, Mikko Niemelä, and Ville Pitkäkangas
Appl. Opt. 53(15) 3233-3240 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved