OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2608–2617

Introducing secure modes of operation for optical encryption

Thomas J. Naughton, Bryan M. Hennelly, and Tom Dowling  »View Author Affiliations

JOSA A, Vol. 25, Issue 10, pp. 2608-2617 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze optical encryption systems using the techniques of conventional cryptography. All conventional block encryption algorithms are vulnerable to attack, and often they employ secure modes of operation as one way to increase security. We introduce the concept of conventional secure modes to optical encryption and analyze the results in the context of known conventional and optical attacks. We consider only the optical system “double random phase encoding,” which forms the basis for a large number of optical encryption, watermarking, and multiplexing systems. We consider all attacks proposed to date in one particular scenario. We analyze only the mathematical algorithms themselves and do not consider the additional security that arises from employing these algorithms in physical optical systems.

© 2008 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.4560) Fourier optics and signal processing : Data processing by optical means
(060.4785) Fiber optics and optical communications : Optical security and encryption
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Image Processing

Original Manuscript: February 27, 2008
Revised Manuscript: July 15, 2008
Manuscript Accepted: July 15, 2008
Published: September 29, 2008

Thomas J. Naughton, Bryan M. Hennelly, and Tom Dowling, "Introducing secure modes of operation for optical encryption," J. Opt. Soc. Am. A 25, 2608-2617 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  2. B. Wang, C. C. Sun, W. C. Su, and A. E. T. Chiou, “Shift tolerance property of an optical double random phase encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000). [CrossRef]
  3. F. Goudail, F. Bollaro, B. Javidi, and P. Refregier, “Influence of a perturbation in a double random phase encoding system,” J. Opt. Soc. Am. A 15, 2629-2638 (1998). [CrossRef]
  4. B. Javidi, N. Towghi, N. Maghzi, and S. C. Verrall, “Error reduction techniques and error analysis for fully phase and amplitude based encryption,” Appl. Opt. 39, 4117-4130 (2000). [CrossRef]
  5. B. M. Hennelly and J. T. Sheridan, “Optical encryption and the space bandwidth product,” Opt. Commun. 247, 291-305 (2005). [CrossRef]
  6. D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Key-space analysis of double random phase encryption technique,” Appl. Opt. 46, 6641-6647 (2007). [CrossRef] [PubMed]
  7. D. S. Monaghan, G. Situ, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Role of phase keys in the double random phase encoding technique: an error analysis,” Appl. Opt. 47, 3808-3816 (2008). [CrossRef] [PubMed]
  8. G. Unnikrishnan and K. Singh, “Double random fractional Fourier domain encoding for optical security,” Opt. Eng. (Bellingham) 39, 2853-2859 (2000). [CrossRef]
  9. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000). [CrossRef]
  10. S. Liu, L. Yu, and B. Zhu, “Optical image encryption by cascaded fractional Fourier transforms with random phase filtering,” Opt. Commun. 187, 57-63 (2001). [CrossRef]
  11. Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202, 277-285 (2002). [CrossRef]
  12. B. M. Hennelly and J. T. Sheridan, “Image encryption and the fractional Fourier transform,” Optik (Stuttgart) 114, 251-265 (2003). [CrossRef]
  13. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28, 269-271 (2003). [CrossRef] [PubMed]
  14. N. K. Nischal, G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption using a localized fractional Fourier transform,” Opt. Eng. (Bellingham) 42, 3566-3571 (2004). [CrossRef]
  15. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999). [CrossRef]
  16. G. Situ and J. Zhang, “A lensless optical security system based on computer-generated phase only masks,” Opt. Commun. 232, 123-128 (2004). [CrossRef]
  17. B. M. Hennelly and J. T. Sheridan, “Random phase and shifting encryption in Fresnel domain,” Opt. Eng. (Bellingham) 43, 1-11 (2004). [CrossRef]
  18. T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. (Bellingham) 43, 2233-2238 (2004). [CrossRef]
  19. G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193, 51-67 (2001). [CrossRef]
  20. H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  21. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004). [CrossRef]
  22. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054-1058 (1997). [CrossRef] [PubMed]
  23. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288-7293 (1999). [CrossRef]
  24. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721-4727 (2001). [CrossRef]
  25. W. C. Su and C. H. Lin, “Enhancement of the angular selectivity in encrypted holographic memory,” Appl. Opt. 43, 2298-2304 (2004). [CrossRef] [PubMed]
  26. B. M. Hennelly, T. J. Naughton, J. B. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32, 1060-1062 (2007). [CrossRef] [PubMed]
  27. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644-1646 (2005). [CrossRef] [PubMed]
  28. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253-10265 (2007). [CrossRef] [PubMed]
  29. X. Peng, H. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261-3263 (2006). [CrossRef] [PubMed]
  30. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181-3186 (2006). [CrossRef] [PubMed]
  31. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044-1046 (2006). [CrossRef] [PubMed]
  32. H.-Y. Lee, J.-P. Liu, C.-C. Chang, H.-F. Yau, and T.-C. Chang, “The decryption of random phase multiplexing encoding system,” Proc. SPIE 5560, 117-123 (2004). [CrossRef]
  33. A. A. Vladimirov, K. V. Gavrilenko, and A. A. Mikhailovsky, Wi-Foo: The Secrets of Wireless Hacking (Addision, Wesley, 2004).
  34. W. Mao, Modern Cryptography (Prentice Hall, 2004).
  35. W. Stallings, Cryptography and Network Security, 4th ed. (Prentice Hall, 2005).
  36. W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory (Prentice Hall, 2001).
  37. S. Vaudenay, “Security flaws induced by CBC padding,” in Advances in Cryptology--Proceedings of EUROCRYPT'02, Lecture Notes in Computer Science (Springer-Verlag, 2002), Vol. 2332, pp. 534-545.
  38. B. Schneier, Applied Cryptography, 2nd ed. (Wiley, 1996), pp. 200-201.
  39. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, 85-101 (2002). [CrossRef]
  40. U. Schnars and W. Juptner, Digital Holography (Springer, 2005).
  41. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000). [CrossRef]
  42. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  43. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002). [CrossRef]
  44. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915-1927 (1999). [CrossRef]
  45. G. Situ, D. S. Monaghan, T. J. Naughton, J. T. Sheridan, G. Pedrini, and W. Osten, “Collision in double random phase encoding,” Opt. Commun. 281, 5122-5125 (2008). [CrossRef]
  46. R. Anderson, Security Engineering, 2nd ed. (Wiley, 2008).
  47. S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books, 2001).
  48. A. Burnett, F. Byrne, T. Dowling, and A. Duffy, “A biometric identity based signature scheme,” Int. J. Netw. Secur. 5, 317-326 (2007).
  49. P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566-568 (2000). [CrossRef]
  50. A. Huang, “Architectural considerations involved in the design of an optical digital computer,” Proc. IEEE 72, 780-786 (1984). [CrossRef]
  51. A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758-779 (1984). [CrossRef]
  52. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2-12 (2003). [CrossRef]
  53. T. J. Naughton, “Continuous-space model of computation is Turing universal,” Proc. SPIE 4109, 121-128 (2000). [CrossRef]
  54. D. Woods and T. J. Naughton, “An optical model of computation,” Theor. Comput. Sci. 334, 227-258 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited