Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Binary mask optimization for inverse lithography with partially coherent illumination

Not Accessible

Your library or personal account may give you access

Abstract

Recently, a set of generalized gradient-based optical proximity correction optimization methods have been developed to solve for the inverse lithography problem under coherent illumination. Most practical lithography systems, however, operate under partially coherent illumination. This paper focuses on developing gradient-based binary mask optimization methods that account for the inherent nonlinearities of partially coherent systems. Two nonlinear models are used in the optimization. The first relies on a Fourier representation that approximates the partially coherent system as a sum of coherent systems. The second model is based on an average coherent approximation that is computationally faster. To influence the solution patterns toward more desirable manufacturability properties, wavelet regularization is added to the optimization framework.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
PSM design for inverse lithography with partially coherent illumination

Xu Maa and Gonzalo R. Arceb
Opt. Express 16(24) 20126-20141 (2008)

Binary mask optimization for forward lithography based on the boundary layer model in coherent systems

Xu Ma and Gonzalo R. Arce
J. Opt. Soc. Am. A 26(7) 1687-1695 (2009)

Mask optimization approaches in optical lithography based on a vector imaging model

Xu Ma, Yanqiu Li, and Lisong Dong
J. Opt. Soc. Am. A 29(7) 1300-1312 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.