OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 2980–2990

Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory

James A. Lock  »View Author Affiliations


JOSA A, Vol. 25, Issue 12, pp. 2980-2990 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002980


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The partial wave scattering and interior amplitudes for the interaction of an electromagnetic plane wave with a modified Luneburg lens are derived in terms of the exterior and interior radial functions of the scalar radiation potentials evaluated at the lens surface. A Debye series decomposition of these amplitudes is also performed and discussed. The effective potential inside the lens for the transverse electric polarization is qualitatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theory orbiting condition in order to demonstrate the smoothing of ray theory discontinuities by the diffraction of scattered waves.

© 2008 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(080.2710) Geometric optics : Inhomogeneous optical media
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: July 30, 2008
Manuscript Accepted: September 11, 2008
Published: November 12, 2008

Citation
James A. Lock, "Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory," J. Opt. Soc. Am. A 25, 2980-2990 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-12-2980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory,” J. Opt. Soc. Am. A 25, 2971-2979 (2008). [CrossRef]
  2. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 756, Eqs. (13.149) and (13.150).
  3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 505, Eqs. (13.1.31) and (13.1.32).
  4. D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson, 2005), pp. 68, 69, and 316.
  5. K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” Ann. Phys. (N.Y.) 7, 259-286 (1959). [CrossRef]
  6. M. V. Berry and K. E. Mount, “Semiclassical approximations in wave mechanics,” Rep. Prog. Phys. 35, 315-397 (1972), Sec. 6.3. [CrossRef]
  7. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg lens. III. Finely stratified sphere model,” J. Opt. Soc. Am. A 25, 2991-3000 (2008). [CrossRef]
  8. P. J. Wyatt, “Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects,” Phys. Rev. 127, 1837-1843 (1962). [CrossRef]
  9. P. J. Wyatt, “Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects (errata),” Phys. Rev. 134, AB1 (1964). [CrossRef]
  10. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 233-235.
  11. B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286-3296 (1996). [CrossRef] [PubMed]
  12. C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory (Intext, 1971), pp. 201-204.
  13. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992), Chap. 14. [CrossRef]
  14. F. Michel, G. Reidenmeister, and S. Ohkubo, “Luneburg lens approach to nuclear rainbow scattering,” Phys. Rev. Lett. 89, 152701-1-152704-4 (2002). [CrossRef]
  15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 504, Eqs. (13.1.2) and (13.1.3).
  16. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585-1592 (1992). [CrossRef]
  17. S. Schiller, “Asymptotic expansion of morphological resonance frequencies in Mie scattering,” Appl. Opt. 32, 2181-2185 (1993). [CrossRef] [PubMed]
  18. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343-352 (1993). [CrossRef]
  19. N. Fiedler-Ferrari, H. M. Nussenzveig, and W. J. Wiscombe, “Theory of near-critical-angle scattering from a curved interface,” Phys. Rev. A 43, 1005-1038 (1991). [CrossRef] [PubMed]
  20. P. L. Marston, “Geometrical and catastrophe optics methods in scattering,” Phys. Acoust. 21, 1-234 (1992), Sec. 2.6.
  21. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992), p. 59.
  22. J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems, 3rd ed. (Harcourt Brace Jovanovich, 1988), p. 256, Eq. (7.38).
  23. J. A. Lock, “Debye series analysis of scattering of a plane wave by a spherical Bragg grating,” Appl. Opt. 44, 5594-5603 (2005). [CrossRef] [PubMed]
  24. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt. 45, 1260-1270 (2006). [CrossRef] [PubMed]
  25. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane-wave scattering by an infinite multilayered cylinder,” Appl. Opt. 45, 6255-6262 (2006). [CrossRef] [PubMed]
  26. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand, 1990), pp. 192-193.
  27. J. A. Lock, J. M. Jamison, and C.-Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt. 33, 4677-4690, (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited