OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 3043–3050

Modes of the infinite square lattice of coupled microring resonators

Ioannis Chremmos and Nikolaos Uzunoglu  »View Author Affiliations

JOSA A, Vol. 25, Issue 12, pp. 3043-3050 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The infinite square lattice of coupled microring optical resonators is studied for what we belive to be the first time. Using the standard matrix formalism and the classical Bloch’s theorem for propagation in periodic optical media, the dispersion equation and the amplitudes of propagating Bloch modes are derived analytically. It is found that the dispersion equation ω ( k x , k y ) of this 2D microring array is expressed as the sum of two independent dispersion equations of the 1D microring array with wavenumbers k x and k y . As a result, the width of the passband is twice that of a microring coupled-resonator optical waveguide and there are no stop bands for an interresonator power coupling ratio greater than 1 2 . The evanescent modes that are important to the analysis of lattices with interrupted periodicity are also studied. The reported analysis is the prerequisite to the future study of superresonators consisting of large finite microring arrays.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: September 16, 2008
Manuscript Accepted: October 14, 2008
Published: November 19, 2008

Ioannis Chremmos and Nikolaos Uzunoglu, "Modes of the infinite square lattice of coupled microring resonators," J. Opt. Soc. Am. A 25, 3043-3050 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Van, “Circuit-based method for synthesizing serially coupled microring filters,” J. Lightwave Technol. 24, 2912-2929 (2006). [CrossRef]
  2. S. Darmawan, Y. M. Landobasa, and M.-K. Chin, “Pole-zero dynamics of high-order ring resonator filters,” J. Lightwave Technol. 25, 1568-1575 (2007). [CrossRef]
  3. C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photonics Technol. Lett. 10, 994-996 (1998). [CrossRef]
  4. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring resonator filters for optical systems,” IEEE Photonics Technol. Lett. 12, 1447-1449 (1995). [CrossRef]
  5. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  6. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000). [CrossRef]
  7. A. Melloni, “Synthesis of a parallel-coupled ring-resonator filter,” Opt. Lett. 26, 917-919 (2001). [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
  9. J. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  10. Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12, 3353-3366 (2004). [CrossRef] [PubMed]
  11. J. Heebner, R. Boyd, and Q. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002). [CrossRef]
  12. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range,” Opt. Lett. 22, 1244-1246 (1997). [CrossRef] [PubMed]
  13. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549-551 (1998). [CrossRef]
  14. I. Chremmos and N. Uzunoglu, “Properties of regular polygons of coupled microring resonators,” Appl. Opt. 46, 7730-7738 (2007). [CrossRef] [PubMed]
  15. J. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photonics Technol. Lett. 16, 1331-1333 (2004). [CrossRef]
  16. V. Van, “Synthesis of elliptic optical filters using mutually coupled microring resonators,” J. Lightwave Technol. 25, 584-590 (2007). [CrossRef]
  17. I. D. Chremmos and N. K. Uzunoglu, “Propagation in a directional coupler of parallel microring coupled-resonator optical waveguides,” Opt. Commun. 281, 3381-3389 (2008). [CrossRef]
  18. Y. M. Landobasa, S. Darmawan, and M.-K. Chin, “Matrix analysis of 2-D microresonator lattice optical filters,” IEEE J. Quantum Electron. 41, 1410-1418 (2005). [CrossRef]
  19. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). [CrossRef]
  20. S. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23, 1565-1573 (2006). [CrossRef]
  21. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited