## Rotation and gyration of finite two-dimensional modes

JOSA A, Vol. 25, Issue 2, pp. 365-370 (2008)

http://dx.doi.org/10.1364/JOSAA.25.000365

Enhanced HTML Acrobat PDF (806 KB)

### Abstract

Hermite–Gauss and Laguerre–Gauss modes of a continuous optical field in two dimensions can be obtained from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space. These transformations build the

© 2008 Optical Society of America

**OCIS Codes**

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(070.4560) Fourier optics and signal processing : Data processing by optical means

(080.2720) Geometric optics : Mathematical methods (general)

(110.6980) Imaging systems : Transforms

(120.4820) Instrumentation, measurement, and metrology : Optical systems

(350.6980) Other areas of optics : Transforms

**ToC Category:**

Fourier Optics and Signal Processing

**History**

Original Manuscript: October 2, 2007

Manuscript Accepted: November 20, 2007

Published: January 16, 2008

**Citation**

Kurt Bernardo Wolf and Tatiana Alieva, "Rotation and gyration of finite two-dimensional modes," J. Opt. Soc. Am. A **25**, 365-370 (2008)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-2-365

Sort: Year | Journal | Reset

### References

- R. Simon and K. B. Wolf, "Fractional Fourier transforms in two dimensions," J. Opt. Soc. Am. A 17, 2368-2381 (2000). [CrossRef]
- M. J. Bastiaans and T. Alieva, "First-order optical systems with unimodular eigenvalues," J. Opt. Soc. Am. A 23, 1875-1883 (2006). [CrossRef]
- T. Alieva and M. J. Bastiaans, "Orthonormal mode sets for the two-dimensional fractional Fourier transform," Opt. Lett. 32, 1226-1228 (2007). [CrossRef] [PubMed]
- J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform: properties and applications," Opt. Express 15, 2190-2203 (2007). [CrossRef] [PubMed]
- L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light" Progress in Optics, Vol. XXXIX, E.Wolf, ed. (Elsevier, 1999), pp. 294-374.
- N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, "Finite two-dimensional oscillator: I. The Cartesian model," J. Phys. A 34, 9381-9398 (2001). [CrossRef]
- N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Contraction of the finite one-dimensional oscillator," Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]
- A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, 1998); Sect. 1.1.
- G. F. Calvo, "Wigner representation and geometric transformations of optical orbital angular momentum spatial modes," Opt. Lett. 30, 1207-1209 (2005). [CrossRef] [PubMed]
- N. M. Atakishiyev and K. B. Wolf, "Fractional Fourier-Kravchuk transform," J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
- N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Finite models of the oscillator," Phys. Part. Nucl. 36, Suppl. 3, 521-555 (2005).
- L. C. Biedenharn and J. D. Louck, "Angular momentum in quantum mechanics," in Encyclopedia of Mathematics and Its Applications, Vol. 8, G.-C.Rota, ed. (Addison-Wesley, 1981), Sect. 3.6.
- N. M. Atakishiyev and S. K. Suslov, "Difference analogs of the harmonic oscillator," Theor. Math. Phys. 85, 1055-1062 (1991). [CrossRef]
- M. Krawtchouk, "Sur une généralization des polinômes d'Hermite," C. R. Acad. Sci. Paris 189, 620-622 (1929).
- N. M. Atakishiyev and K. B. Wolf, "Approximation on a finite set of points through Kravchuk functions," Rev. Mex. Fís. 40, 366-377 (1994).
- N. M. Atakishiyev, L. M. Vicent, and K. B. Wolf, "Continuous vs. discrete fractional Fourier transforms," J. Comput. Appl. Math. 107, 73-95 (1999). [CrossRef]
- L. Barker, Ç. Çandan, T. Hakioglu, and H. M. Ozaktas, "The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform," J. Phys. A 33, 2209-2222 (2000). [CrossRef]
- L. Barker, "Continuum quantum systems as limits of discrete quantum systems: II. State functions," J. Phys. A 34, 4673-4682 (2001). [CrossRef]
- L. E. Ruiz-Vicent, "Análisis de señales discretas finitas mediante el modelo de oscilador finito de su(2)," Ph. D. thesis (Universidad Autónoma del Estado de Morelos, Cuernavaca, 2007).
- K. B. Wolf and G. Krötzsch, "Geometry and dynamics in the Fresnel transforms of discrete systems," J. Opt. Soc. Am. A 24, 2568-2577 (2007). [CrossRef]
- K. B. Wolf and G. Krötzsch, "Geometry and dynamics of squeezing in finite systems," J. Opt. Soc. Am. A 24, 2871-2878 (2007). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.