OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 365–370

Rotation and gyration of finite two-dimensional modes

Kurt Bernardo Wolf and Tatiana Alieva  »View Author Affiliations


JOSA A, Vol. 25, Issue 2, pp. 365-370 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000365


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hermite–Gauss and Laguerre–Gauss modes of a continuous optical field in two dimensions can be obtained from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space. These transformations build the SU ( 2 ) Fourier group that is represented by rigid rotations of the Poincaré sphere. In finite systems, where the emitters and the sensors are in N × N square pixellated arrays, one defines corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the importation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite modes.

© 2008 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.4560) Fourier optics and signal processing : Data processing by optical means
(080.2720) Geometric optics : Mathematical methods (general)
(110.6980) Imaging systems : Transforms
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(350.6980) Other areas of optics : Transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 2, 2007
Manuscript Accepted: November 20, 2007
Published: January 16, 2008

Citation
Kurt Bernardo Wolf and Tatiana Alieva, "Rotation and gyration of finite two-dimensional modes," J. Opt. Soc. Am. A 25, 365-370 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-2-365


Sort:  Year  |  Journal  |  Reset  

References

  1. R. Simon and K. B. Wolf, "Fractional Fourier transforms in two dimensions," J. Opt. Soc. Am. A 17, 2368-2381 (2000). [CrossRef]
  2. M. J. Bastiaans and T. Alieva, "First-order optical systems with unimodular eigenvalues," J. Opt. Soc. Am. A 23, 1875-1883 (2006). [CrossRef]
  3. T. Alieva and M. J. Bastiaans, "Orthonormal mode sets for the two-dimensional fractional Fourier transform," Opt. Lett. 32, 1226-1228 (2007). [CrossRef] [PubMed]
  4. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform: properties and applications," Opt. Express 15, 2190-2203 (2007). [CrossRef] [PubMed]
  5. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light" Progress in Optics, Vol. XXXIX, E.Wolf, ed. (Elsevier, 1999), pp. 294-374.
  6. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, "Finite two-dimensional oscillator: I. The Cartesian model," J. Phys. A 34, 9381-9398 (2001). [CrossRef]
  7. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Contraction of the finite one-dimensional oscillator," Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]
  8. A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, 1998); Sect. 1.1.
  9. G. F. Calvo, "Wigner representation and geometric transformations of optical orbital angular momentum spatial modes," Opt. Lett. 30, 1207-1209 (2005). [CrossRef] [PubMed]
  10. N. M. Atakishiyev and K. B. Wolf, "Fractional Fourier-Kravchuk transform," J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
  11. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Finite models of the oscillator," Phys. Part. Nucl. 36, Suppl. 3, 521-555 (2005).
  12. L. C. Biedenharn and J. D. Louck, "Angular momentum in quantum mechanics," in Encyclopedia of Mathematics and Its Applications, Vol. 8, G.-C.Rota, ed. (Addison-Wesley, 1981), Sect. 3.6.
  13. N. M. Atakishiyev and S. K. Suslov, "Difference analogs of the harmonic oscillator," Theor. Math. Phys. 85, 1055-1062 (1991). [CrossRef]
  14. M. Krawtchouk, "Sur une généralization des polinômes d'Hermite," C. R. Acad. Sci. Paris 189, 620-622 (1929).
  15. N. M. Atakishiyev and K. B. Wolf, "Approximation on a finite set of points through Kravchuk functions," Rev. Mex. Fís. 40, 366-377 (1994).
  16. N. M. Atakishiyev, L. M. Vicent, and K. B. Wolf, "Continuous vs. discrete fractional Fourier transforms," J. Comput. Appl. Math. 107, 73-95 (1999). [CrossRef]
  17. L. Barker, Ç. Çandan, T. Hakioglu, and H. M. Ozaktas, "The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform," J. Phys. A 33, 2209-2222 (2000). [CrossRef]
  18. L. Barker, "Continuum quantum systems as limits of discrete quantum systems: II. State functions," J. Phys. A 34, 4673-4682 (2001). [CrossRef]
  19. L. E. Ruiz-Vicent, "Análisis de señales discretas finitas mediante el modelo de oscilador finito de su(2)," Ph. D. thesis (Universidad Autónoma del Estado de Morelos, Cuernavaca, 2007).
  20. K. B. Wolf and G. Krötzsch, "Geometry and dynamics in the Fresnel transforms of discrete systems," J. Opt. Soc. Am. A 24, 2568-2577 (2007). [CrossRef]
  21. K. B. Wolf and G. Krötzsch, "Geometry and dynamics of squeezing in finite systems," J. Opt. Soc. Am. A 24, 2871-2878 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited