OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 515–525

Stochastic realization approach to the efficient simulation of phase screens

Alessandro Beghi, Angelo Cenedese, and Andrea Masiero  »View Author Affiliations

JOSA A, Vol. 25, Issue 2, pp. 515-525 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase screen method is a well-established approach to take into account the effects of atmospheric turbulence in astronomical seeing. This is of key importance in designing adaptive optics for new-generation telescopes, in particular in view of applications such as exoplanet detection or long-exposure spectroscopy. We present an innovative approach to simulate turbulent phase that is based on stochastic realization theory. The method shows appealing properties in terms of both accuracy in reconstructing the structure function and compactness of the representation.

© 2008 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(350.5030) Other areas of optics : Phase

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 20, 2007
Revised Manuscript: October 7, 2007
Manuscript Accepted: November 5, 2007
Published: January 31, 2008

Alessandro Beghi, Angelo Cenedese, and Andrea Masiero, "Stochastic realization approach to the efficient simulation of phase screens," J. Opt. Soc. Am. A 25, 515-525 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. ESO, "The Very Large Telescope Project," http://www.eso.org/projects/vlt/.
  2. M. Le Louarn, N. Hubin, M. Sarazin, and A. Tokovinin, "New challenges for adaptive optics: extremely large telescopes," Mon. Not. R. Astron. Soc. 317, 535-544 (2000). [CrossRef]
  3. P. Dierickx, J. L. Beckers, E. Brunetto, R. Conan, E. Fedrigo, R. Gilmozzi, N. Hubin, F. Koch, M. Le Louarn, E. Marchetti, G. Monnet, L. Noethe, M. Quattri, M. Sarazin, J. Spyromillo, and N. Yaitskova, "The eye of the beholder: designing the OWL," Proc. SPIE 4840, 151-170 (2003). [CrossRef]
  4. A. N. Kolmogorov, "Dissipation of energy in the locally isotropic turbulence," C. R. (Dokl.) Acad. Sci. URSS 32, 16-18 (1941).
  5. A. N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluid for very large Reynold's numbers," C. R. (Dokl.) Acad. Sci. URSS 30, 301-305 (1941).
  6. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  7. H. G. Booker, T. A. Ratcliffe, and D. H. Schinn, "Diffraction from an irregular screen with applications to ionospheric problems," Philos. Trans. R. Soc. London, Ser. A 242, 579-609 (1950). [CrossRef]
  8. F. Assémat, R. W. Wilson, and E. Gendron, "Method for simulating infinitely long and nonstationary phase screens with optimized memory storage," Opt. Express 14, 988-999 (2006). [CrossRef] [PubMed]
  9. A. Tokovinin, "From differential image motion to seeing," Publ. Astron. Soc. Pac. 114, 1156-1166 (2002). [CrossRef]
  10. D. L. Fried, "Statistics of a geometric representation of wavefront distortion," J. Opt. Soc. Am. 55, 1427-1435 (1965). [CrossRef]
  11. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999). [CrossRef]
  12. M. Aoki, State Space Modeling of Time Series, 2nd ed. (Springer-Verlag, 1991).
  13. H. P. Zeiger and A. J. McEwen, "Approximate linear realization of given dimension via Ho's algorithm," IEEE Trans. Autom. Control 19, 153 (1974). [CrossRef]
  14. A. Lindquist and G. Picci, "Canonical correlation analysis, approximate covariance extension, and identification of stationary time series," Automatica 32, 709-733 (1996). [CrossRef]
  15. B. L. Ho and R. E. Kalman, "Effective construction of linear state-variable models from input/output functions," Regelungstechnik 14, 545-548 (1966).
  16. S. Y. Kung, "A new identification and model reduction algorithm via singular value decomposition," in Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers (IEEE, 1978), pp. 705-714.
  17. H. Akaike, "Stochastic theory of minimal realization," IEEE Trans. Autom. Control 19, 667-674 (1974). [CrossRef]
  18. H. Akaike, "Markovian representation of stochastic processes by canonical variables," SIAM J. Control 13, 162-173 (1975). [CrossRef]
  19. U. B. Desai and D. Pal, "A realization approach to stochastic model reduction and balanced stochastic realizations," in Proceedings of IEEE Conference on Decision and Control (IEEE, 1982), pp. 1105-1112.
  20. F. Roddier, "The effects of atmospheric turbulence in optical astronomy," Prog. Opt. 19, 281-376 (1981). [CrossRef]
  21. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability (Springer-Verlag, 1993).
  22. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  23. R. Conan, "Modélisation des effets de l'échelle externe de cohérence spatiale du front d'onde pour l'observation à Haute Résolution Angulaire en Astronomie," Ph.D. thesis (Université de Nice-Sophia Antipolis, 2000).
  24. N. Takato and I. Yamagughi, "Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale," J. Opt. Soc. Am. A 12, 958-963 (1995). [CrossRef]
  25. D. M. Winker, "Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence," J. Opt. Soc. Am. A 8, 1568-1573 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited