OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 710–717

Blind image deconvolution by means of asymmetric multiplicative iterative algorithm

Jianlin Zhang, Qiheng Zhang, and Guangming He  »View Author Affiliations


JOSA A, Vol. 25, Issue 3, pp. 710-717 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000710


View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel scheme for blind deconvolution is presented. Adapted from our previous multiplicative iterative algorithm, a more general scheme—the asymmetric multiplicative iterative algorithm—is derived. Additionally, in order to obtain a meaningful estimate, a penalized asymmetric multiplicative iterative algorithm is used to further improve the performance of this scheme. Results of a numerical experiment with the asymmetric multiplicative iterative algorithm are presented.

© 2008 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration
(100.1455) Image processing : Blind deconvolution

ToC Category:
Image Processing

History
Original Manuscript: November 18, 2007
Revised Manuscript: January 8, 2008
Manuscript Accepted: January 8, 2008
Published: February 15, 2008

Citation
Jianlin Zhang, Qiheng Zhang, and Guangming He, "Blind image deconvolution by means of asymmetric multiplicative iterative algorithm," J. Opt. Soc. Am. A 25, 710-717 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-3-710


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations (Yale U. Press, 1923).
  2. M. Cannon, “Blind deconvolution of spatially invariant image blur with phase,” IEEE Trans. Acoust., Speech, Signal Process. 24, 58-63 (1976). [CrossRef]
  3. R. G. Lane and R. H. T. Bates, “Automatic multidimensional deconvolution,” J. Opt. Soc. Am. A 4, 180-188 (1987). [CrossRef]
  4. D. C. Ghiglia, L. A. Romero, and G. A. Mastin, “Systematic approach to two-dimensional blind deconvolution by zero-sheet separation,” J. Opt. Soc. Am. A 10, 1024-1036 (1993). [CrossRef]
  5. P. J. Bones, C. R. Parker, B. L. Satherly, and R. W. Watson, “Deconvolution and phase retrieval with use of zero sheets,” J. Opt. Soc. Am. A 12, 1842-1857 (1995). [CrossRef]
  6. G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547-549 (1988). [CrossRef] [PubMed]
  7. B. L. K. Davey, R. G. Lane, and R. H. T. Bates, “Blind deconvolution of noisy complex-valued image,” Opt. Commun. 69, 353-356 (1989). [CrossRef]
  8. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508-1514 (1992). [CrossRef]
  9. D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson-Lucy algorithm,” J. Opt. Soc. Am. A 12, 58-65 (1995). [CrossRef]
  10. H. Lantéri, C. Aime, H. Beaumont, and P. Gauchere, “Blind deconvolution using the Richardson-Lucy algorithm,” Proc. SPIE 2312, 182-192 (1994). [CrossRef]
  11. F. Tsumuraya, N. Miura, and N. Baba, “Iterative blind deconvolution method using Lucy's algorithm,” Astron. Astrophys. 282, 699-708 (1994).
  12. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052-1061 (1992). [CrossRef] [PubMed]
  13. E. Thiébaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485-492 (1995). [CrossRef]
  14. T. S. Zacchéo and R. A. Gonsalves, “Iterative maximum-likelihood estimators for positively constrained objects,” J. Opt. Soc. Am. A 13, 236-242 (1996). [CrossRef]
  15. R. G. Lane, “Methods for maximum-likelihood deconvolution,” J. Opt. Soc. Am. A 13, 1992-1998 (1996). [CrossRef]
  16. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064-1073 (1993). [CrossRef]
  17. T. J. Schulz, B. E. Stribling, and J. J. Miller, “Multiframe blind deconvolution with real data: imagery of the Hubble Space Telescope,” Opt. Express 1, 355-362 (1997). [CrossRef] [PubMed]
  18. D. G. Sheppard, B. R. Hunt, and M. W. Marcellin, “Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery,” J. Opt. Soc. Am. A 15, 978-992 (1998). [CrossRef]
  19. E. Y. Lam and J. W. Goodman, “Iterative statistical approach to blind image deconvolution,” J. Opt. Soc. Am. A 17, 1177-1184 (2000). [CrossRef]
  20. N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimisation,” Opt. Commun. 128, 341-352 (1996). [CrossRef]
  21. D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992). [CrossRef]
  22. J. Zhang, Q. Zhang, and G. He, “Blind deconvolution: multiplicative iterative algorithm,” Opt. Lett. 33, 25-27 (2008). [CrossRef]
  23. R. Vio, J. Bardsley, and W. Wamsteker, “Least-squares methods with Poissonian noise: an analysis and a comparison with the Richardson-Lucy algorithm,” Astron. Astrophys. 436, 741-755 (2005). [CrossRef]
  24. H. Lantéri, R. Soummer, and C. Aime, “Comparison between ISRA and RLA algorithms. Use of a Wiener filter based stopping criterion,” Astron. Astrophys. Suppl. Ser. 140, 235-246 (1999). [CrossRef]
  25. C. Xu, I. Assaoui, S. Jacquery, “Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor,” J. Opt. Soc. Am. A 11, 2804-2808 (1994). [CrossRef]
  26. P. J. Sementilli, B. R. Hunt, and M. S. Nadar, “Analysis of the limit to superresolution in incoherent imaging,” J. Opt. Soc. Am. A 10, 2265-2276 (1993). [CrossRef]
  27. J. A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15, 2609-2619 (1998). [CrossRef]
  28. http://www.cmnh.org/site/ClassesandProgramsLecturesFrontiersAstronomy.aspx.
  29. M. C. Roggemann and B. Welsh, Imaging through Turbulence (CRC Press, 1996).
  30. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, 1977).
  31. R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends Communic. Inf. Theory 2, 155-239 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited