OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 838–845

Separation technique of a mixing of two uncorrelated and perfectly polarized lights with different coherence and polarization properties

Antoine Roueff and Philippe Réfrégier  »View Author Affiliations


JOSA A, Vol. 25, Issue 4, pp. 838-845 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000838


View Full Text Article

Enhanced HTML    Acrobat PDF (264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sum of two uncorrelated and totally polarized lights with different coherence and polarization properties usually results in a partially polarized light. It is shown in this paper that the initial totally polarized lights can be recovered from the mixed partially polarized light. The proposed technique is based on coherence analysis and does not require the knowledge of the polarization states or the coherence properties of the initial perfectly polarized beams as long as these properties are different for the two waves. Some practical optical implementations of this technique are discussed on different illustrative applications.

© 2008 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 23, 2007
Revised Manuscript: January 24, 2008
Manuscript Accepted: January 26, 2008
Published: March 5, 2008

Citation
Antoine Roueff and Philippe Réfrégier, "Separation technique of a mixing of two uncorrelated and perfectly polarized lights with different coherence and polarization properties," J. Opt. Soc. Am. A 25, 838-845 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-4-838


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  2. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137-1142 (2003). [CrossRef] [PubMed]
  3. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain,” J. Opt. Soc. Am. A 21, 2205-2215 (2004). [CrossRef]
  4. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328-330 (2004). [CrossRef] [PubMed]
  5. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78-84 (2003). [CrossRef]
  6. G. S. Agarwal, A. Dogariu, T. D. Visser, and E. Wolf, “Generation of complete coherence in Young's interference experiment with random mutually uncorrelated electromagnetic beams,” Opt. Lett. 30, 120-122 (2005). [CrossRef] [PubMed]
  7. Ph. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051-6060 (2005). [CrossRef] [PubMed]
  8. Ph. Réfrégier, “Mutual information-based degrees of coherence of partially polarized light with Gaussian fluctuations,” Opt. Lett. 30, 3117-3119 (2005). [CrossRef] [PubMed]
  9. Ph. Réfrégier and J. Morio, “Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations,” J. Opt. Soc. Am. A 23, 3036-3044 (2006). [CrossRef]
  10. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effect of coherence on the degree of polarization in a Young interference pattern,” Opt. Lett. 31, 688-670 (2006). [CrossRef] [PubMed]
  11. T. Setälä, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young's interference experiment,” Opt. Lett. 31, 2208-2210 (2006). [CrossRef] [PubMed]
  12. T. Setälä, J. Tervo, and A. T. Friberg, “Contrasts of Stokes parameters in Young's interference experiment and electromagnetic degree of coherence,” Opt. Lett. 31, 2669-2671 (2006). [CrossRef] [PubMed]
  13. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young's fringe visibility through reversible optical transformations,” Opt. Lett. 32, 588-590 (2007). [CrossRef] [PubMed]
  14. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices,” J. Opt. Soc. Am. A 24, 1063-1068 (2007). [CrossRef]
  15. R. Martinez-Herrero and P. M. Mejias, “Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields,” Opt. Lett. 32, 1471-1473 (2007). [CrossRef] [PubMed]
  16. R. Martinez-Herrero and P. M. Mejias, “Relation between degrees of coherence for electromagnetic fields,” Opt. Lett. 32, 1504-1506 (2007). [CrossRef] [PubMed]
  17. I. Berezhnyy and A. Dogariu, “Polarimetric description of superposing random electromagnetic fields with different spectral composition,” J. Opt. Soc. Am. A 21, 218-222 (2004). [CrossRef]
  18. L. Mandel and E. Wolf, “Second-order coherence theory of scalar wavefields,” in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 160-170.
  19. J. W. Goodman, “Some first-order properties of light waves,” in Statistical Optics (Wiley, 1985), pp. 116-156.
  20. E. Wolf, “Unified theory of polarization and coherence,” in Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007), pp. 174-197.
  21. Ph. Réfrégier, “Fluctuations and covariance,” in Noise Theory and Application to Physics: From Fluctuations to Information (Springer, 2004), pp. 28-32.
  22. E. Wolf, “Second-order coherence phenomena in the space-time domain,” in Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007), pp. 31-58.
  23. Ph. Réfrégier and A. Roueff, “Coherence polarization filtering and relation with intrinsic degrees of coherence,” Opt. Lett. 31, 1175-1177 (2006). [CrossRef] [PubMed]
  24. Ph. Réfrégier and A. Roueff, “Linear relations of partially polarized and coherent electromagnetic fields,” Opt. Lett. 31, 2827-2829 (2006). [CrossRef] [PubMed]
  25. L. Mandel and E. Wolf, “Second-order coherence theory of vector wavefields,” in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 342-349.
  26. S. Huard, “Propagation of states of polarization in optical devices,” in Polarization of Light (Wiley, 1997), pp. 86-130.
  27. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241-243 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited