OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 881–890

Significant deformations and propagation variations of Laguerre–Gaussian beams reflected and transmitted at a dielectric interface

Hiroshi Okuda and Hiroyuki Sasada  »View Author Affiliations

JOSA A, Vol. 25, Issue 4, pp. 881-890 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe TM and TE Laguerre–Gaussian (LG) light beams reflected and transmitted at a dielectric interface near critical incidence. The intensity distribution of the reflected beam is transversely deformed near the beam waist, and that of the transmitted beam is similar to that of a diagonal Hermite–Gaussian beam. The former rotates around the optical axis by approximately π 2 with propagation, and the latter returns to that of the incident LG beam. These observations agree well with numerical calculations based on an angular spectral analysis and are attributable to the helical wavefront of the LG beams, the sharp incidence-angle dependence of the Fresnel reflection and transmission coefficients, and the Gouy phase.

© 2008 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.7000) Instrumentation, measurement, and metrology : Transmission

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 16, 2007
Revised Manuscript: December 25, 2007
Manuscript Accepted: February 4, 2008
Published: March 17, 2008

Hiroshi Okuda and Hiroyuki Sasada, "Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface," J. Opt. Soc. Am. A 25, 881-890 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586-594 (1971). [CrossRef]
  2. C. C. Chan and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,” J. Opt. Soc. Am. A 4, 655-663 (1987). [CrossRef]
  3. W. Nasalski, “Longitudinal and transverse effects of nonspecular reflection,” J. Opt. Soc. Am. A 13, 172-181 (1996). [CrossRef]
  4. F. I. Baida, D. van Labeke, and J-M. Vigoureux, “Numerical study of the displacement of a three dimensional Gaussian beam transmitted at total internal reflection. Near-field applications,” J. Opt. Soc. Am. A 17, 858-866 (2000).
  5. W. Nasalski, “Three-dimensional beam reflection at dielectric interfaces,” Opt. Commun. 197, 217-233 (2001). [CrossRef]
  6. F. Goos and H. Hänchen, “Ein neue und fundamentaler Versuch zur total Reflection,” Ann. Phys. 1, 333-345 (1947). [CrossRef]
  7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  8. F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk SSSR 105, 465-467 (1955).
  9. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787-796 (1972). [CrossRef]
  10. O. Hosten and P. G. Kwiat, “Observing the spin Hall effect of light via quantum weak measurements,” presented at Frontiers in Optics 2007, OSA's Annual Meeting, San Jose, Calif., USA, September 16-20, 2007.
  11. V. G. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam,” Opt. Commun. 193, 9-18 (2001). [CrossRef]
  12. R. Dasgupta and P. K. Gupta, “Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre-Gaussian light beam,” Opt. Commun. 257, 91-96 (2006). [CrossRef]
  13. O. Costa de Beauregard, C. Imbert, and Y. Lévy, “Observation of shifts in total reflection of a light beam by a multilayered structure,” Phys. Rev. D 15, 3553-3562 (1977). [CrossRef]
  14. F. Pillon, H. Gilles, and S. Girard, “Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection,” Appl. Opt. 43, 1863-1869 (2004). [CrossRef] [PubMed]
  15. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901-1-4 (2004). [CrossRef]
  16. A. Köházi-Kis, “Cross-polarization effects of light beams at interfaces of isotropic media,” Opt. Commun. 253, 28 (2005). [CrossRef]
  17. W. Nasalski and Y. Pagani, “Excitation and cancellation of higher-order beam modes at isotropic interfaces,” J. Opt. A, Pure Appl. Opt. 8, 21 (2006). [CrossRef]
  18. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006). [CrossRef] [PubMed]
  19. W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface,” Phys. Rev. E 74, 056613 (2006). [CrossRef]
  20. K. Y. Bliokh and Y. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007). [CrossRef]
  21. H. Okuda and H. Sasada, “Huge transverse deformation in nonspecular reflection of a light beam possessing orbital angular momentum near critical incidence,” Opt. Express 14, 8393-8402 (2006). [CrossRef] [PubMed]
  22. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am. 67, 103-107 (1975). [CrossRef]
  23. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), Chap. 14.
  24. I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwillinger, Table of Integrals, Series, and Products, 6th ed. (Academic, 2000), Chap. 7.
  25. Y. M. Antar and W. M. Boerner, “Gaussian beam interaction with a planar dielectric interface,” Can. J. Phys. 52, 962-972 (1974).
  26. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 30-33.
  27. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  28. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132 (1993). [CrossRef]
  29. V. Yu. Bazhenov, M. V. Vasnetov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429-431 (1990).
  30. H. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinstein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951-S962 (1992). [CrossRef]
  31. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67-71 (2000). [CrossRef]
  32. V. V. Kottlyar, V. A. Soifer, and S. N. Konina, “Rotation of multimode Gauss-Laguerre light beams in free space,” Tech. Phys. Lett. 23, 657-658 (1997). [CrossRef]
  33. A. T. O'Neil, I. M. Vicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  34. A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093-1094 (1973). [CrossRef]
  35. J. Enderlein and F. Pampaloni, “Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes,” J. Opt. Soc. Am. A 21, 1553-1558 (2004). [CrossRef]
  36. L.Allen, S.M.Barnett, and M.J.Padgett, eds. Optical Angular Momentum (IOP, 2003). [CrossRef]
  37. H. Sasada and M. Okamoto, “Transverse-mode beam splitter of a light beam and its application to quantum cryptography,” Phys. Rev. A 68, 012323 (2003). [CrossRef]
  38. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004). [CrossRef] [PubMed]
  39. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited