OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 958–967

Simulations of astronomical imaging phased arrays

George Saklatvala, Stafford Withington, and Michael P. Hobson  »View Author Affiliations

JOSA A, Vol. 25, Issue 4, pp. 958-967 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a theoretical procedure for analyzing astronomical phased arrays with overlapping beams and apply the procedure to simulate a simple example. We demonstrate the effect of overlapping beams on the number of degrees of freedom of the array and on the ability of the array to recover a source. We show that the best images are obtained using overlapping beams, contrary to common practice, and show how the dynamic range of a phased array directly affects the image quality.

© 2008 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(350.1260) Other areas of optics : Astronomical optics
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: August 8, 2007
Manuscript Accepted: November 26, 2007
Published: March 26, 2008

George Saklatvala, Stafford Withington, and Michael P. Hobson, "Simulations of astronomical imaging phased arrays," J. Opt. Soc. Am. A 25, 958-967 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. R. Braun, “The concept of the square kilometer array interferometer,” in Proceedings of High Sensitivity Radio Astronomy, N.Jackson and R.J.Davies, eds. (Cambridge U. Press, 1997), pp. 260-268.
  2. A. van Ardenne, A. Smolders, and G. Hampson, “Active adaptive antennas for radio astronomy: results of the R & D program towards the square kilometer array,” Proc. SPIE 4014, 420-433 (2000). [CrossRef]
  3. A. Ardenne, P. Wilkinson, P. Patel, and J. Vaate, “Electronic multi-beam radio astronomy concept: embrace a demonstrator for the European SKA program,” Exp. Astron. 17, 65-77 (2004). [CrossRef]
  4. N. E. Kassim, T. J. W. Lazio, P. S. Ray, P. C. Crane, B. C. Hicks, K. P. Stewart, A. S. Cohen, and W. M. Lane, “The low-frequency array (LOFAR): opening a new window on the universe,” Planet. Space Sci. 52, 1543-1549 (2004). [CrossRef]
  5. I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys. 27, 1271-1283 (1986). [CrossRef]
  6. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961-1005 (1990). [CrossRef]
  7. A. Refregier, “Shapelets: a method for image analysis,” Mon. Not. R. Astron. Soc. 338, 35-47 (2003). [CrossRef]
  8. R. H. Berry, M. P. Hobson, and S. Withington, “Modal decomposition of astronomical images with application to shapelets,” Mon. Not. R. Astron. Soc. 354, 199-211 (2004). [CrossRef]
  9. R. Masset and A. Refregier, “Polar shapelets,” Mon. Not. R. Astron. Soc. 363, 197-210 (2005). [CrossRef]
  10. S. Withington, G. Saklatvala, and M. P. Hobson, “Theoretical analysis of astronomical phased arrays,” J. Opt. A, Pure Appl. Opt. 10, 015304 (2007). [CrossRef]
  11. L. Milner and M. Parker, “A broadband 8-18 GHz 4-input 4-output Butler matrix,” Proc. SPIE 6414, 641406 (2007). [CrossRef]
  12. S. W. Ellingson, “Efficient multibeam synthesis with interference nulling for large arrays,” IEEE Trans. Antennas Propag. 51, 503-511 (2003). [CrossRef]
  13. C. Lee, D. Leigh, K. Ryall, H. Miyashita, and K. Hirata, “Very fast subarray position calculation for minimizing sidelobes in sparse linear phased arrays,” in Proceedings of the European Conference on Antennas and Propagation (EuCAP, 2006), Vol. 606, pp. 80-87. Available online at http://www.merl.com/reports/docs/TR2006-022.pdf.
  14. E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bull. Am. Math. Soc. 26, 394-395 (1920).
  15. R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406-413 (1955). [CrossRef]
  16. R. Penrose, “On best approximate solutions of linear equations,” Proc. Cambridge Philos. Soc. 52, 17-19 (1955). [CrossRef]
  17. P. G. Casazza, “The art of frame theory,” Taiwan. J. Math. 4, 129-201 (2000).
  18. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited