## Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-*Q* whispering-gallery modes of a circular cylinder

JOSA A, Vol. 25, Issue 5, pp. 1169-1173 (2008)

http://dx.doi.org/10.1364/JOSAA.25.001169

Enhanced HTML Acrobat PDF (650 KB)

### Abstract

Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-*Q* whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational errors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having *Q*-factors up to

© 2008 Optical Society of America

**OCIS Codes**

(000.3860) General : Mathematical methods in physics

(000.4430) General : Numerical approximation and analysis

(220.0220) Optical design and fabrication : Optical design and fabrication

(230.5750) Optical devices : Resonators

(290.0290) Scattering : Scattering

**ToC Category:**

Optical Devices

**History**

Original Manuscript: February 4, 2008

Manuscript Accepted: March 13, 2008

Published: April 28, 2008

**Citation**

Artem V. Boriskin, Svetlana V. Boriskina, Anthony Rolland, Ronan Sauleau, and Alexander I. Nosich, "Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder," J. Opt. Soc. Am. A **25**, 1169-1173 (2008)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-5-1169

Sort: Year | Journal | Reset

### References

- A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
- V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006). [CrossRef]
- A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.
- S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006). [CrossRef]
- P. W. Evans and N. Holonyak Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996). [CrossRef]
- A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
- E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006). [CrossRef] [PubMed]
- P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007). [CrossRef]
- S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487-2494 (2007). [CrossRef]
- K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propag. Mag. 37, 39-57 (1995). [CrossRef]
- A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
- G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993). [CrossRef]
- K. Phan-Huy, A. Morand, D. Amans, and P. Benech, “Analytical study of the whispering-gallery modes in two-dimensional microgear cavity using coupled-mode theory,” J. Opt. Soc. Am. B 22, 1793-1804 (2005). [CrossRef]
- Y. Liu, C. D. Sarrisa, and G. V. Eleftheriades, “Triangular-mesh-based FDTD analysis of 2-D plasmonic structures supporting backward waves at optical frequencies,” J. Lightwave Technol. 25, 938-946 (2007). [CrossRef]
- E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005). [CrossRef]
- D. Marcuse, Light Transmission Optics, Computer Science and Engineering Series (Van Nostrand Reinhold Electrical, 1989).
- S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997). [CrossRef]
- A. Sakai and T. Baba, “FDTD simulation of photonic devices and circuits based on circular and fan-shaped microdisks,” J. Lightwave Technol. 17, 1493-1499 (1999). [CrossRef]
- Y. Liu and C. D. Sarris, “Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach,” J. Lightwave Technol. 24, 3235-3248 (2006). [CrossRef]
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
- L.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problem,” IEEE Trans. Antennas Propag. 44, 110-118 (1996). [CrossRef]
- A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008). [CrossRef]
- Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004). [CrossRef]
- A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245-1249 (2002). [CrossRef]
- S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004). [CrossRef]
- S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004). [CrossRef]
- A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004). [CrossRef]
- A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.