OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1960–1973

Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency

Svetlana L. Lachinova and Mikhail A. Vorontsov  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 1960-1973 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (794 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(140.3290) Lasers and laser optics : Laser arrays
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 27, 2008
Revised Manuscript: June 2, 2008
Manuscript Accepted: June 3, 2008
Published: July 10, 2008

Svetlana L. Lachinova and Mikhail A. Vorontsov, "Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency," J. Opt. Soc. Am. A 25, 1960-1973 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Vorontsov and S. L. Lachinova, “Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency,” J. Opt. Soc. Am. A 25, 1949-1959 (2008). [CrossRef]
  2. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, 1971).
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  5. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966). [CrossRef]
  6. F.Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, 1999). [CrossRef]
  7. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  8. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  9. M. A. Vorontsov and V. I. Shmalgauzen, The Principles of Adaptive Optics (Nauka, 1985).
  10. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature 353, 144-146 (1991). [CrossRef]
  11. E. Kibblewhite, “Laser beacons for astronomy,” in Laser Guide Star Adaptive Optics, R.Q.Fugate, ed. (Philips Laboratory, Kirtland Air Force Base, 1992), pp. 24-36.
  12. N.Ageorges and C.Dainty, eds., Laser Guide Star Adaptive Optics for Astronomy (Kluwer Academic, 2000).
  13. T. R. O'Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306-315 (1977). [CrossRef]
  14. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907-909 (1997). [CrossRef] [PubMed]
  15. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: Integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356-368 (2002). [CrossRef]
  16. In this case the phase locking is similar to the piston-type aberration compensation in conventional adaptive optical systems with a segmented wavefront corrector. The difference is that in fiber-based conformal systems the phase shifts {vj(t)} can be introduced using fast (GHz rate) fiber-based phase shifters as shown in Fig. .
  17. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961)
  18. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 301-305 (1941) A. N. Kolmogorov,(in Russian) [English translation in Proc. R. Soc. London, Ser. A 434, 9-13 (1991)]. [CrossRef]
  19. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC Press, 1996)
  20. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time dependent propagation of high energy laser beam through the atmosphere,” Appl. Phys. Lett. 11, 329-335 (1977).
  21. S. M. Flatte, G. Y. Wang, and J. Martin, “Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,” J. Opt. Soc. Am. A 10, 2363-2370 (1993). [CrossRef]
  22. S. L. Lachinova and M. A. Vorontsov, “Performance analysis of an adaptive phase-locked tiled fiber array in atmospheric turbulence conditions,” Proc. SPIE 5895, 58950O (2005). [CrossRef]
  23. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  24. In the considered pupil-plane phase screen approximation, the target-plane field complex amplitude distribution A(r,z=L) represents the Fresnel diffraction integral, which is equivalent to the Fourier transform of the complex function A(r,z=0) multiplied by a quadratic phase exponential term exp(−ikr2/2L).
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  26. Typical examples of pupil-plane phase screens and the corresponding target-plane intensity distributions can be found in .
  27. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865-2882 (1992). [CrossRef] [PubMed]
  28. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759-2768 (1998). [CrossRef]
  29. V. Aksenov, V. Banakh, and O. Tikhomirova, “Potential and vortex features of optical speckle fields and visualization of wave-front singularities,” Appl. Opt. 37, 4536-4540 (1998). [CrossRef]
  30. M. Minden, “Coherent coupling of a fiber amplifier array,” in Thirteenth Annual Solid State and Diode Laser Technology Review, SSDLTR 2000 Tech. Digest (Air Force Research Laboratory, 2000).
  31. J. Anderegg, S. J. Brosnan, M. E. Weber, H. Komine, and M. G. Wickham, “8-W coherently phased 4-element fiber array,” Proc. SPIE 4974, 1-6 (2003). [CrossRef]
  32. H. Bruesselbach, S. Wang, M. Minden, D. C. Jones, and M. Mangir, “Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere,” J. Opt. Soc. Am. B 22, 347-353 (2005). [CrossRef]
  33. L. Liu and M. A. Vorontsov, “Phase-locking of tiled fiber array using SPGD feedback controller,” Proc. SPIE 5895, 58950P (2005). [CrossRef]
  34. P. Sprangle, J. Penano, and A. Ting, “Incoherent combining of high-power fibers lasers for long-range directed energy applications. Interim Rept. May-Jun 2006,” NRL/MR/6790-06-8963 (Naval Research Laboratory, 2006).
  35. J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, M. Weber, and M. Wickham, “Coherently coupled high power fiber arrays,” Proc. SPIE 6102, 61020U (2006). [CrossRef]
  36. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006). [CrossRef]
  37. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14, 12188-12195 (2006). [CrossRef] [PubMed]
  38. T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, D. J. Nelson, and C. A. Lu, “Narrow linewidth coherent beam combining of optical fiber amplifier arrays,” Proc. SPIE 6451, 64511N (2007). [CrossRef]
  39. L. Liu, D. Loizos, M. A. Vorontsov, P. Sotiriadis, and G. Cauwenberghs, “Coherent combining of multiple beams with multi-dithering technique: 100KHz closed-loop compensation demonstration,” Proc. SPIE 6708, 67080D (2007). [CrossRef]
  40. L. Liu, M. A. Vorontsov, E. Polnau, T. Weyrauch, and L. A. Beresnev, “Adaptive phase-locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners,” Proc. SPIE 6708, 67080K (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited