OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 2018–2024

Signal-subspace method approach to the intensity-only electromagnetic inverse scattering problem

Xudong Chen  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 2018-2024 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002018


View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper investigates the signal-subspace method approach to solve the electromagnetic inverse scattering problem using intensity-only (phase-free) data. Due to the polarization of electromagnetic fields, the relationship between the rank of the multistatic matrix and the number of small scatterers is different from that associated with the scalar wave. Multiple scattering between scatterers is considered, and the inverse scattering problem of determining the polarization tensors is nonlinear, which, however, is solved by the proposed analytical approach where no associated forward problem is iteratively evaluated.

© 2008 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:
Physical Optics

History
Original Manuscript: May 14, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: June 12, 2008
Published: July 11, 2008

Citation
Xudong Chen, "Signal-subspace method approach to the intensity-only electromagnetic inverse scattering problem," J. Opt. Soc. Am. A 25, 2018-2024 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-2018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. Marengo, R. D. Hernandez, and H. Lev-Ari, “Intensity-only signal-subspace-based imaging,” J. Opt. Soc. Am. A 24, 3619-3635 (2007). [CrossRef]
  2. H. Ammari, E. Iakovleva, D. Lesselier, and G. Perruson, “MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions,” SIAM J. Sci. Comput. (USA) 29, 674-709 (2007). [CrossRef]
  3. M. Cheney, “The linear sampling method and the MUSIC algorithm,” Inverse Probl. 17, 591-595 (2001). [CrossRef]
  4. Y. Zhong and X. Chen, “MUSIC imaging and electromagnetic inverse scattering of multiply scattering small anisotropic spheres,” IEEE Trans. Antennas Propag. 55, 3542-3549 (2007). [CrossRef]
  5. E. A. Marengo and F. K. Gruber, “Subspace-based localization and inverse scattering of multiply scattering point targets,” EURASIP J. Appl. Signal Process. 2007, 17342 (2007). [CrossRef]
  6. D. H. Chambers and J. G. Berryman, “Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field,” IEEE Trans. Antennas Propag. 52, 1729-1738 (2004). [CrossRef]
  7. D. H. Chambers and J. G. Berryman, “Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids,” Inverse Probl. 22, 2145-2163 (2006). [CrossRef]
  8. D. H. Chambers and A. K. Gautesen, “Time-reversal operator for a single spherical scatterer,” J. Acoust. Soc. Am. 109, 2616-2624 (2001). [CrossRef] [PubMed]
  9. E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16, 1967-1984 (2007). [CrossRef] [PubMed]
  10. E. A. Marengo, “Further theoretical considerations for time-reversal MUSIC imaging of extended scatterers,” in IEEE/SP 14th Workshop on Statistical Signal Processing (IEEE, 2007), pp. 304-306. [CrossRef]
  11. A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118, 3129-3138 (2005). [CrossRef]
  12. E. A. Marengo and F. K. Gruber, “Noniterative analytical formula for inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 120, 3782-3788 (2006). [CrossRef]
  13. X. Chen and Y. Zhong, “A robust noniterative method for obtaining scattering strengths of multiply scattering point targets,” J. Acoust. Soc. Am. 122, 1325-1327 (2007). [CrossRef] [PubMed]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scatttering of Light by Small Particles (Wiley, 1998). [CrossRef]
  15. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements (Springer-Verlag, 2004).
  16. X. Chen, “MUSIC imaging applied to total internal reflection tomography,” J. Opt. Soc. Am. A 25, 357-364 (2008). [CrossRef]
  17. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, 1986).
  18. A. Kirsch, “The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,” Inverse Probl. 18, 1025-1040 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited