OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 2149–2155

Integral representation of the edge diffracted waves along the ray path of the transition region

Yusuf Z. Umul  »View Author Affiliations


JOSA A, Vol. 25, Issue 9, pp. 2149-2155 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002149


View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The expression of the edge diffracted fields, in terms of the Fresnel integral, is transformed into a path integral. The obtained integral considers the integration of the incident field along the ray path of the transition region. The similarities of the path integral with Kirchhoff’s theory of diffraction and the modified theory of physical optics are examined.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.1940) Diffraction and gratings : Diffraction
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: May 1, 2008
Revised Manuscript: June 25, 2008
Manuscript Accepted: June 27, 2008
Published: August 4, 2008

Citation
Yusuf Z. Umul, "Integral representation of the edge diffracted waves along the ray path of the transition region," J. Opt. Soc. Am. A 25, 2149-2155 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-9-2149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Z. Umul, “Modified theory of physical optics,” Opt. Express 12, 4959-4972 (2004). [CrossRef] [PubMed]
  2. Y. Z. Umul, “Uniform line integral representation of edge-diffracted fields,” J. Opt. Soc. Am. A 25, 133-137 (2008). [CrossRef]
  3. R. Borghi, “Summing Pauli asymptotic series to solve the wedge problem,” J. Opt. Soc. Am. A 25, 211-218 (2008). [CrossRef]
  4. R. Kumar, “Structure of the boundary diffraction wave revisited,” Appl. Phys. B: Lasers Opt. 90, 379-382 (2008). [CrossRef]
  5. Y. Z. Umul, “Alternative interpretation of the edge diffraction phenomenon,” J. Opt. Soc. Am. A 25, 582-587 (2008). [CrossRef]
  6. A. Rubinowicz, “Thomas Young and the theory of diffraction,” Nature 180, 160-162 (1957). [CrossRef]
  7. O. M. Bucci and G. Pelosi, “From wave theory to ray optics,” IEEE Antennas Propag. Mag. 36, 35-42 (1994). [CrossRef]
  8. G. Kirchhoff, “Zur theorie der Lichtstrahlen,” Ann. Phys. 254, 663-695 (1883) (in German). [CrossRef]
  9. A. Sommerfeld, “Matematische theorie der diffraction,” Math. Ann. 47, 317-374 (1896) (in German). [CrossRef]
  10. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygen's Principle (Oxford U. Press, 1953).
  11. A. Rubinowicz, “Die beugungswelle in der Kirchhoffschen theorie der beugungserscheinungen,” Ann. Phys. 358, 257-278 (1917) (in German). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2003).
  13. W. C. Elmore and M. A. Heald, Physics of Waves (Mc-Graw Hill, 1969).
  14. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--part I,” J. Opt. Soc. Am. 52, 615-625 (1962). [CrossRef]
  15. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--part II,” J. Opt. Soc. Am. 52, 626-637 (1962). [CrossRef]
  16. A. Rubinowicz, “Simple derivation of the Miyamoto-Wolf formula for the vector potential associated with a solution of the Helmholtz equation,” J. Opt. Soc. Am. 52, 717-722 (1962). [CrossRef]
  17. A. Rubinowicz, “Geometric derivation of the Miyamoto-Wolf formula for the vector potential associated with a solution of the Helmholtz equation,” J. Opt. Soc. Am. 52, 717-718 (1962). [CrossRef]
  18. A. Rubinowicz, “The Miyamoto-Wolf diffraction wave,” Prog. Opt. 4, 199-240 (1965). [CrossRef]
  19. J. B. Keller, “Diffraction by an aperture,” J. Appl. Phys. 28, 426-444 (1957). [CrossRef]
  20. J. B. Keller, “Diffraction by an aperture II,” J. Appl. Phys. 28, 570-579 (1957). [CrossRef]
  21. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  22. J. B. Keller, “One hundred years of diffraction theory,” IEEE Trans. Antennas Propag. AP-33, 123-126 (1985). [CrossRef]
  23. D. S. Ahluwalia, R. M. Lewis, and J. Boersma, “Uniform asymptotic theory of diffraction by a plane screen,” SIAM J. Appl. Math. 16, 783-807 (1968). [CrossRef]
  24. R. M. Lewis and J. Boersma, “Uniform asymptotic theory of edge diffraction,” J. Math. Phys. 10, 2291-2305 (1969). [CrossRef]
  25. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448-1461 (1974). [CrossRef]
  26. G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves (IEE Press, 1976).
  27. P. Ya. Ufimtsev, “Theory of acoustical edge waves,” J. Acoust. Soc. Am. 86, 463-474 (1989). [CrossRef]
  28. P. Ya. Ufimtsev, “Elementary edge waves and the physical theory of diffraction,” Electromagnetics 11, 125-160 (1991). [CrossRef]
  29. P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction (Wiley, 2007). [CrossRef]
  30. Y. Z. Umul, “Modified theory of physical optics approach to wedge diffraction problems,” Opt. Express 13, 216-224 (2005). [CrossRef] [PubMed]
  31. Y. Z. Umul, “Edge-dislocation waves in the diffraction process by an impedance half-plane,” J. Opt. Soc. Am. A 24, 507-511 (2007). [CrossRef]
  32. Y. Z. Umul, “Diffraction by a black half-plane: modified theory of physical optics approach,” Opt. Express 13, 7276-7287 (2005). [CrossRef] [PubMed]
  33. F. Gori, “Diffraction from a half-plane. A new derivation of the Sommerfeld solution,” Opt. Commun. 48, 67-70 (1983). [CrossRef]
  34. S. Ganci, “A general scalar solution for the half-plane problem,” J. Mod. Opt. 42, 1707-1711 (1995). [CrossRef]
  35. Y. Z. Umul, “MTPO based potential function of the boundary diffraction wave theory,” Opt. Laser Technol. 40, 769-774 (2008). [CrossRef]
  36. A. H. Serbest, “An extension to GTD for an edge on a curved perfectly conducting surface,” IEEE Trans. Antennas Propag. AP-34, 837-841 (1986). [CrossRef]
  37. J. B. Keller, “Rays, waves and asymptotics,” Bull. Am. Math. Soc. 84, 727-750 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited