OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 2177–2184

Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method

Ming Che and Zhi-Yuan Li  »View Author Affiliations

JOSA A, Vol. 25, Issue 9, pp. 2177-2184 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a plane-wave transfer-matrix method (PWTMM) with the aid of the interpolation technique to analyze the dispersion relation of surface modes in photonic crystal or photonic crystal surface waveguide. The proposed approach has been applied to several surface structures in two-dimensional photonic crystals. The calculated dispersion relation of the surface modes is in good agreement with the result obtained by the conventional plane-wave expansion method in combination with the supercell technique. The developed PWTMM needs to handle only a single unit-cell layer domain and is therefore numerically friendly. The proposed approach can become an efficient and accurate numerical tool to understand and design surface modes in different two-dimensional and three-dimensional photonic crystals with complex geometries.

© 2008 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(260.2110) Physical optics : Electromagnetic optics
(160.5298) Materials : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: May 16, 2008
Revised Manuscript: July 1, 2008
Manuscript Accepted: July 7, 2008
Published: August 6, 2008

Ming Che and Zhi-Yuan Li, "Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method," J. Opt. Soc. Am. A 25, 2177-2184 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, 1995).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961-10964 (1991). [CrossRef]
  4. F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2D array of square dielectric cylinders,” Solid State Commun. 100, 311-314 (1996). [CrossRef]
  5. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane,” Phys. Rev. B 59, 15112-15120 (1999). [CrossRef]
  6. J. M. Elson and P. Tran, “Coupled-mode calculation with the R-matrix propagator for the dispersion of surface waves on a truncated photonic crystal,” Phys. Rev. B 54, 1711-1715 (1996). [CrossRef]
  7. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528-530 (1993). [CrossRef] [PubMed]
  8. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402(R) (2004). [CrossRef]
  9. W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430 (2007). [CrossRef]
  10. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  11. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078-3080 (2005). [CrossRef] [PubMed]
  12. W. T. Lau and S. H. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915-3917 (2002). [CrossRef]
  13. Y. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538-4544 (2004). [CrossRef]
  14. Y. A. Vlasov, N. Moll, and S. J. McNab, “Observation of surface states in a truncated photonic crystal slab,” Opt. Lett. 29, 2175-2177 (2004). [CrossRef] [PubMed]
  15. E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007). [CrossRef]
  16. A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119 (2008). [CrossRef]
  17. H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Parka, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006). [CrossRef]
  18. H. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14, 7368-7377 (2006). [CrossRef] [PubMed]
  19. X. D. Zhang, L. M. Li, Z. Q. Zhang, and C. T. Chan, “Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method,” Phys. Rev. B 63, 125114 (2001). [CrossRef]
  20. A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679-1683 (2006). [CrossRef]
  21. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in finite and infinite photonic crystals: The recursive Green's function technique,” Phys. Rev. B 72, 155117 (2005). [CrossRef]
  22. J. M. Elson and K. Halterman, “Local density of states analysis of surface wave modes on truncated photonic crystal surfaces with nonlinear material,” Opt. Express 12, 4855-4863 (2004). [CrossRef] [PubMed]
  23. N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B 73, 113113 (2006). [CrossRef]
  24. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  25. L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94, 811-821 (2003). [CrossRef]
  26. Z. Y. Li and K. M. Ho, “Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides,” Phys. Rev. B 68, 245117 (2003). [CrossRef]
  27. Z. Y. Li and K. M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [CrossRef]
  28. Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84, 4699-4701 (2004). [CrossRef]
  29. M. Che, Z. Y. Li, and R. J. Liu, “Tunable optical anisotropy in three-dimensional photonic crystal,” Phys. Rev. A 76, 023809 (2007). [CrossRef]
  30. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interface,” Rev. Mod. Phys. 78, 455-481 (2006). [CrossRef]
  31. M. Che and Z. Y. Li, “Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method,” Phys. Rev. B 77, 125138 (2008). [CrossRef]
  32. http://ab-initio.mit.edu/wiki/index. php/MIT_Photonic_Bands.
  33. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  34. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  35. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B 66, 115109 (2002). [CrossRef]
  36. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited