OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 173–183

Rotation of absorbing spheres in Laguerre–Gaussian beams

Stephen H. Simpson and Simon Hanna  »View Author Affiliations


JOSA A, Vol. 26, Issue 1, pp. 173-183 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000173


View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is well known that optical vortex beams carry orbital as well as spin angular momentum. This optical angular momentum can manifest itself mechanically, for example in tightly focused Laguerre–Gaussian beams, where trapped, weakly absorbing spheres rotate at a rate proportional to the total angular momentum carried by the beam. In the present paper we subject this system to a rigorous analysis involving expansions in vector spherical wave functions that culminates in a simple expression for the torque on the sphere. It is seen that, for large weakly absorbing spheres, the induced torque per unit power is independent of the detailed structure of the incident field, being a simple function of two indices that describe the helicity and polarization state of the beam, the relative refractive indices of the sphere and ambient medium, the absorption index of the sphere, and its radius. A number of relationships between the coefficients of these expansions are also developed.

© 2008 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 7, 2008
Manuscript Accepted: November 11, 2008
Published: December 24, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Stephen H. Simpson and Simon Hanna, "Rotation of absorbing spheres in Laguerre-Gaussian beams," J. Opt. Soc. Am. A 26, 173-183 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-1-173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82, 560-567 (1909). [CrossRef]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115-125 (1936). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  4. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165-190 (1974). [CrossRef]
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  6. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  7. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  8. A. T. O'Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139-143 (2000). [CrossRef]
  9. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  10. M. J. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003). [CrossRef]
  11. R. Loudon, “Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics,” Phys. Rev. A 68, 013806 (2003). [CrossRef]
  12. S. Chang and S. S. Lee, “Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode of a laser beam,” J. Opt. Soc. Am. B 2, 1853-1860 (1985). [CrossRef]
  13. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30, 469-492 (1998). [CrossRef]
  14. A. S. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express 15, 13360-13374 (2007). [CrossRef] [PubMed]
  15. S. M. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670-678 (1994). [CrossRef]
  16. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468-471 (2001). [CrossRef]
  17. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation and optical measurement of laser trapping forces on non-spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 70, 627-637 (2001). [CrossRef]
  18. S. H. Simpson and S. Hanna, “Numerical calculation of inter-particle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419-1431 (2006). [CrossRef]
  19. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430-443 (2007). [CrossRef]
  20. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76, 043408 (2007). [CrossRef]
  21. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  22. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  23. G. Gouesbet, J. A. Lock, and G. Grehan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133-2143 (1995). [CrossRef] [PubMed]
  24. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802 (2003). [CrossRef]
  25. O. Moine and B. Stout, “Optical force calculations in arbitrary beams by use of the vector addition theorem,” J. Opt. Soc. Am. B 22, 1620-1631 (2005). [CrossRef]
  26. J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electronic J. Differ. Equations, Conf. 04, 37-50 (2000).
  27. Y. Zhao, J. S. Edgar, G. D. M. Jefferies, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007). [CrossRef] [PubMed]
  28. A. O'Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  29. L. Allen and M. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67-71 (2000). [CrossRef]
  30. S. H. Simpson and S. Hanna, in preparation, to be called “Axial trapping in Laguerre-Gaussian beams.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited