OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2139–2146

Propagation of flat-topped multi-Gaussian beams through an apertured A B C D optical system

Yan-Qi Gao, Bao-Qiang Zhu, Dai-Zhong Liu, and Zun-Qi Lin  »View Author Affiliations


JOSA A, Vol. 26, Issue 10, pp. 2139-2146 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002139


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generalized analytical expression for the propagation of flat-topped multi-Gaussian beams through a misaligned apertured A B C D optical system is derived. Using this analytical expression, the propagation characteristics of flat-topped multi-Gaussian beams through a spatial filter are investigated. The analytical formula of the electric field distribution in the focal plane is also derived for revealing the effects of the misalignment parameters clearly. It is found that different misalignment parameters have different influences on the electric field distributions of the beam focus spot and the output beam characteristics. The intensity distribution of the beam is mainly determined by the misalignment matrix element E, and the phase distribution is affected by the misalignment matrix elements G and E.

© 2009 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(080.2730) Geometric optics : Matrix methods in paraxial optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: June 11, 2009
Revised Manuscript: August 9, 2009
Manuscript Accepted: August 10, 2009
Published: September 8, 2009

Citation
Yan-Qi Gao, Bao-Qiang Zhu, Dai-Zhong Liu, and Zun-Qi Lin, "Propagation of flat-topped multi-Gaussian beams through an apertured ABCD optical system," J. Opt. Soc. Am. A 26, 2139-2146 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-10-2139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. B. Tian, M. Nix, and S. S.-H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34, 229-231 (2009). [CrossRef] [PubMed]
  2. M. G. Tarallo, J. Miller, J. Agresti, E. D'Ambrosio, R. DeSalvo, D. Forest, B. Lagrange, J. M. Mackowsky, C. Michel, J. L. Montorio, N. Morgado, L. Pinard, A. Remilleux, B. Simoni, and P. Willems, “Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator,” Appl. Opt. 46, 6648-6654 (2007). [CrossRef] [PubMed]
  3. F. Wang and Y. J. Cai, “Experimental generation of a partially coherent flat-topped beam,” Opt. Lett. 33, 1795-1797 (2008). [CrossRef] [PubMed]
  4. C. L. Zhao, Y. J. Cai, X. H. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753-1765 (2009). [CrossRef] [PubMed]
  5. D. J. Liu and Z. X. Zhou, “Propagation of partially coherent flat-topped beams in uniaxial crystals orthogonal to the optical axis,” J. Opt. Soc. Am. A 26, 924-930 (2009). [CrossRef]
  6. Y. Q. Dan and B. Zhang, “Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere,” Opt. Express 16, 15563-15575 (2008). [CrossRef] [PubMed]
  7. R. Borghi and M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Opt. Lett. 23, 313-315 (1998). [CrossRef]
  8. Y. Q. Dan, B. Zhang, and P. P. Pan, “Propagation of partially coherent flat-topped beams through a turbulent atmosphere,” J. Opt. Soc. Am. A 25, 2223-2231 (2008). [CrossRef]
  9. X. L. Jim and B. D. Lü, “Propagation of a flattened Gaussian beam through muti-apertured optical ABCD systems,” Optik (Stuttgart) 114, 394-400 (2003). [CrossRef]
  10. Q. Cao and S. Chi, “Axially symmetric on-axis flat-top beam,” J. Opt. Soc. Am. A 17, 447-455 (2000). [CrossRef]
  11. Z. Mei and D. Zhao, “Approximate method for the generalized M2 factor of rotationally symmetric hard-edged diffracted flattened Gaussian beams,” Appl. Opt. 44, 1381-1386 (2005). [CrossRef] [PubMed]
  12. B. Lü and S. Luo, “General propagation equation of flatted Gaussian beams,” J. Opt. Soc. Am. A 17, 2001-2004 (2000). [CrossRef]
  13. B. Lü and S. Luo, “Approximate propagation equations of flattened Gaussian beams passing through a paraxial ABCD system with hard-edge aperture,” J. Mod. Opt. 48, 2619-2718 (2001).
  14. Y. J. Cai and S. L. He, “Partially coherent flattened Gaussian beam and its paraxial propagation properties,” J. Opt. Soc. Am. A 23, 2623-2628 (2006). [CrossRef]
  15. D. Ge, Y. J. Cai, and Q. Lin, “Partially coherent flat-topped beam and its propagation,” Appl. Opt. 43, 4732-4738 (2004). [CrossRef] [PubMed]
  16. P. Wu, B. Lü, and T. Chen, “Fractional Fourier transform of flat-topped multi-Gaussian beams based on the Wigner distribution function,” Chin. Phys. 14, 1130-1135 (2005). [CrossRef]
  17. S. D. Silvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201-203 (1988). [CrossRef] [PubMed]
  18. J. J. Wen and M. A. Breazeale, “A diffraction beam field expressed as a superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752-1756 (1988). [CrossRef]
  19. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335-341 (1994). [CrossRef]
  20. A. A. Tovar, “Propagation of flat-topped multi-Gaussian laser beams,” J. Opt. Soc. Am. A 18, 1897-1904 (2001). [CrossRef]
  21. J. N. Chen, “Propagation and transformation of flat-topped multi-Gaussian beams in a general nonsymmetrical apertured double-lens system,” J. Opt. Soc. Am. A 24, 84-92 (2007). [CrossRef]
  22. Y. J. Cai and Q. Lin, “Partially coherent flat-topped multi-Gaussian-Schell-model beam and its propagation,” Opt. Commun. 239, 33-41 (2004). [CrossRef]
  23. Y. Q. Gao, B. Q. Zhu, D. Z. Liu, and Z. Q. Lin, “Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures,” Opt. Express 17, 12753-12766 (2009). [CrossRef] [PubMed]
  24. C. W. Zheng, “Off-axis flat-topped multi-Gaussian beam and its propagation through a paraxial optical system,” Optik (Stuttgart) 118, 552-556 (2007). [CrossRef]
  25. B. D. Lü and B. Z. Li, “Study of the correspondence between flat-topped multi-Gaussian beams and super-Gaussian beams,” J. Opt. A, Pure Appl. Opt. 4, 509-513 (2002). [CrossRef]
  26. S. Wang and L. Ronchi, “Principles and design of optical array,” in Progress in Optics, Vol. XXV, E.Wolf, ed. (Elsevier, 1988), pp. 284-323.
  27. Y. B. Zhu and D. M. Zhao, “Propagation of a random electromagnetic beam through a misaligned optical system in turbulent atmosphere,” J. Opt. Soc. Am. A 25, 2408-2414 (2008). [CrossRef]
  28. W. Q. Pan and Y. J. Zhu, “The impulse response function of apertured and misaligned ABCD optical system in phase-space,” Opt. Commun. 282, 752-756 (2009). [CrossRef]
  29. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  30. Y. Q. Gao, B. Q. Zhu, D. Z. Liu, X. F. Liu, and Z. Q. Lin, “Characteristics of beam alignment in a high power four-pass laser amplifier,” Appl. Opt. 48, 1591-1597 (2009). [CrossRef] [PubMed]
  31. P. M. Celliers, K. G. Estabrook, R. J. Wallace, J. E. Murray, L. B. D. Silva, B. J. MacGowan, B. M. V. Wonterghem, and K. R. Manes, “Spatial filter pinhole for high-energy pulsed lasers,” Appl. Opt. 37, 2371-2378 (1998). [CrossRef]
  32. Y. Q. Gao, B. Q. Zhu, D. Z. Liu, Z. Y. Peng, and Z. Q. Lin, “Study of mathematical model for auto-alignment in four-pass amplifier,” Chin. Phys. B 57, 6992-6997 (2008).
  33. A. K. Potemkin, T. V. Barmashova, A. V. Kirsanov, M. A. Martyanov, E. A. Khazanov, and A. A. Shaykin, “Spatial filters for high-peak-power multistage laser amplifiers,” Appl. Opt. 46, 4423-4430 (2007). [CrossRef] [PubMed]
  34. J. E. Murray, D. Milam, C. D. Boley, K. G. Estabrook, and J. A. Caird, “Spatial filter pinhole development for the national ignition facility,” Appl. Opt. 39, 1405-1420 (2000). [CrossRef]
  35. J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053-2057 (1978). [CrossRef] [PubMed]
  36. Y. Q. Gao, B. Q. Zhu, D. Z. Liu, X. F. Liu, and Z. Q. Lin, “Algorithm of far-field centre estimation based on phase-only matched filter,” Chin. Phys. B 18, 215-220 (2009). [CrossRef]
  37. A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrell, “Fresnel diffraction effects in the design of high-power laser systems,” Appl. Phys. Lett. 23, 85-87 (1973). [CrossRef]
  38. M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771-778 (1996). [CrossRef]
  39. J. E. Harvey and A. Krywonos, “Axial irradiance distribution throughout the whole space behind an annular aperture,” Appl. Opt. 41, 3790-3795 (2002). [CrossRef] [PubMed]
  40. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388-1390 (1994). [CrossRef] [PubMed]
  41. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743-751 (1995). [CrossRef]
  42. I. Moreno, C. Ferreira, and M. M. Sánchez-López, “Ray matrix analysis of anamorphic fractional Fourier systems,” J. Opt. A, Pure Appl. Opt. 8, 427-435 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited