OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2306–2310

New complex integration transformation and its compatibility with complex Weyl–Wigner transformation and entangled state representation

Hong-yi Fan and Cui-hong Lv  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2306-2310 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enlightened by the special transformation in our preceding paper [ J. Mod. Opt. 56, 1227 (2009) ], we propose a new complex integration transformation corresponding to two mutually conjugate two-mode entangled states η | and ξ | that is compatible with η ξ phase space quantum mechanics and can be used to obtain the complex fractional Fourier transformation kernel from the chirplet function. This transformation obeys the Parseval theorem and is invertible.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: August 13, 2009
Manuscript Accepted: September 9, 2009
Published: October 9, 2009

Hong-yi Fan and Cui-hong Lv, "New complex integration transformation and its compatibility with complex Weyl-Wigner transformation and entangled state representation," J. Opt. Soc. Am. A 26, 2306-2310 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241-265 (1980). [CrossRef]
  2. V. Namias, “Fractionalization of Hankel Transforms,” J. Inst. Math. Appl. 26, 187-197 (1980). [CrossRef]
  3. D. Mendlovic and H. M. Ozaktas, “Fractional fourier transforms and their optical implementation:I,” J. Opt. Soc. Am. A 10, 1875-1881 (1993). [CrossRef]
  4. H. M. Ozakatas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation:II,” J. Opt. Soc. Am. A 10, 2522-2531 (1993). [CrossRef]
  5. H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional orders and their optical interpretation,” Opt. Commun. 101, 163-169 (1993). [CrossRef]
  6. Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769-770 (1993). [CrossRef]
  7. R. G. Dorsch and A. W. Lohmann, “Fractional Fourier transform used for a lens-design problem,” Appl. Opt. 34, 4111-4112 (1995). [CrossRef] [PubMed]
  8. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181-2186 (1993). [CrossRef]
  9. D. Mendlovic, H. M. Ozakatas, and A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188-6193 (1994). [CrossRef] [PubMed]
  10. H. Y. Fan, “Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation,” Opt. Lett. 28, 2177-2179 (2003). [CrossRef] [PubMed]
  11. H. Y. Fan and H. L. Lu, “Eigenmodes of fractional Hankel transform derived by the entangled-state method,” Opt. Lett. 28, 680-682 (2003). [CrossRef] [PubMed]
  12. H. Y. Fan and L. Y. Hu, “Optical transformation from chirplet to fractional Fourier transformation kernel,” J. Mod. Opt. 56, 1227-1229 (2009). [CrossRef]
  13. H. Weyl, “Quantenmechanik und Gruppentheorie,” Z. Phys. 46, 1-46 (1927). [CrossRef]
  14. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935). [CrossRef]
  15. H. Y. Fan and J. R. Klauder, “Eigenvectors of two particles' relative position and total momentum,” Phys. Rev. A 49, 704-707 (1994). [CrossRef]
  16. H. Y. Fan and Y. Fan, “EPR entangled states and complex fractional Fourier transformation,” Eur. Phys. J. D 21, 233-238 (2002). [CrossRef]
  17. H. Y. Fan, L. Y. Hu, and J. S. Wang, “Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics,” J. Opt. Soc. Am. A 25, 974-978 (2008). [CrossRef]
  18. H. Y. Fan, “Time evolution of the Wigner function in the entangled-state representation,” Phys. Rev. A 65, 064102 (2002). [CrossRef]
  19. D. Dragoman, “Classical versus complex fractional Fourier transformation,” J. Opt. Soc. Am. A 26, 274-277 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited