OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2327–2335

Improved model-based infrared reflectrometry for measuring deep trench structures

Chuanwei Zhang, Shiyuan Liu, Tielin Shi, and Zirong Tang  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2327-2335 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Model-based infrared reflectrometry (MBIR) has been introduced recently for characterization of high-aspect-ratio deep trench structures in microelectronics. The success of this technique relies heavily on accurate modeling of trench structures and fast extraction of trench parameters. In this paper, we propose a modeling method named corrected effective medium approximation (CEMA) for accurate and fast reflectivity calculation of deep trench structures. We also develop a method combining an artificial neural network (ANN) and a Levenberg–Marquardt (LM) algorithm for robust and fast extraction of geometric parameters from the measured reflectance spectrum. The simulation and experimental work conducted on typical deep trench structures has verified the proposed methods and demonstrated that the improved MBIR metrology achieves highly accurate measurement results as well as fast computation speed.

© 2009 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.6340) Spectroscopy : Spectroscopy, infrared
(050.2065) Diffraction and gratings : Effective medium theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 1, 2009
Manuscript Accepted: September 8, 2009
Published: October 13, 2009

Chuanwei Zhang, Shiyuan Liu, Tielin Shi, and Zirong Tang, "Improved model-based infrared reflectrometry for measuring deep trench structures," J. Opt. Soc. Am. A 26, 2327-2335 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006). [CrossRef]
  2. U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.
  3. R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006). [CrossRef]
  4. M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006). [CrossRef]
  5. E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007). [CrossRef]
  6. C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001). [CrossRef]
  7. A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007). [CrossRef]
  8. P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005). [CrossRef]
  9. C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.
  10. K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).
  11. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001). [CrossRef]
  12. R. T. Zheng, N. Q. Ngo, L. N. Binh, and S. C. Tjin, “Two-stage hybrid optimization of fiber Bragg gratings for design of linear phase filters,” J. Opt. Soc. Am. A 21, 2399-2405 (2004). [CrossRef]
  13. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257-6271 (1999). [CrossRef]
  14. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. 4, 4-22 (1987). [CrossRef]
  15. I. Gereige, S. Robert, S. Thiria, F. Badran, G. Granet, and J. J. Rousseau, “Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry,” J. Opt. Soc. Am. A 25, 1661-1667 (2008). [CrossRef]
  16. B. Kaplan, T. Novikova, A. D. Martino, and B. Drévillon, “Characterization of bidimensional gratings by spectroscopic ellipsometry and angle-resolved Mueller polarimetry,” Appl. Opt. 43, 1233-1240 (2004). [CrossRef] [PubMed]
  17. G. E. Jellison, “Physics of optical metrology of silicon-based semiconductor devices,” in Handbook of Silicon Semiconductor Metrology, A.C.Diebold, ed. (Marcel Dekker, 2001), pp. 723-760.
  18. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  19. S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).
  20. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549-553 (1991). [CrossRef]
  21. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875-7882 (1994). [CrossRef] [PubMed]
  22. P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996). [CrossRef]
  23. P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450-458 (1997). [CrossRef]
  24. S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited