OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2444–2451

Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method

Yumao Wu and Ya Yan Lu  »View Author Affiliations


JOSA A, Vol. 26, Issue 11, pp. 2444-2451 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002444


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For analyzing diffraction gratings, a new method is developed based on dividing one period of the grating into homogeneous subdomains and computing the Neumann-to-Dirichlet (NtD) maps for these subdomains by boundary integral equations. For a subdomain, the NtD operator maps the normal derivative of the wave field to the wave field on its boundary. The integral operators used in this method are simple to approximate, since they involve only the standard Green’s function of the Helmholtz equation in homogeneous media. The method retains the advantages of existing boundary integral equation methods for diffraction gratings but avoids the quasi-periodic Green’s functions that are expensive to evaluate.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

History
Original Manuscript: August 18, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 24, 2009
Published: October 27, 2009

Citation
Yumao Wu and Ya Yan Lu, "Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method," J. Opt. Soc. Am. A 26, 2444-2451 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-11-2444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R.Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  2. G.Bao, L.Cowsar, and W.Masters, ed., Mathematical Modeling in Optical Sciences (Society for Industrial and Applied Mathematics, 2001). [CrossRef]
  3. M. Nevière and E. Popov, Light Propagation in Periodic Media, Marcel Dekker, 2003.
  4. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981). [CrossRef]
  5. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087-1102 (1981). [CrossRef]
  6. L. Li, “Multilayer modal method for diffration gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581-2591 (1993). [CrossRef]
  7. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  8. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  9. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  10. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  11. E. Popov and M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000). [CrossRef]
  12. E. Popov and M. Nevière, “Maxwell equations in Fourier space: A fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886-2894 (2001). [CrossRef]
  13. D. Maystre, “Integral Methods,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3. [CrossRef]
  14. A. Pomp, “The integral method for coated gratings--computational cost,” J. Mod. Opt. 38, 109-120 (1991). [CrossRef]
  15. B. H. Kleemann, A. Mitreiter, and F. Wyrowski, “Integral equation method with parametrization of grating profile--heory and experiments,” J. Mod. Opt. 43, 1323-1349 (1996). [CrossRef]
  16. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34-43 (1997). [CrossRef]
  17. E. Popov, B. Bozhkov, D. Maystre, and J. Hoose, “Integral method for echelles covered with lossless or absorbing thin dielectric layers,” Appl. Opt. 38, 47-55 (1999). [CrossRef]
  18. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405-2418 (2005). [CrossRef]
  19. A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “On a fast integral equation method for diffraction gratings,” Commun. Comput. Phys. 1, 984-1009 (2006).
  20. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235-241 (1980). [CrossRef]
  21. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839-846 (1982). [CrossRef]
  22. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304-313 (1999). [CrossRef]
  23. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106-1114 (2005). [CrossRef]
  24. E. Popov, M. Nevière, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33-42 (2002). [CrossRef]
  25. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps,” J. Lightwave Technol. 24, 3448-3453 (2006). [CrossRef]
  26. Y. Huang and Y. Y. Lu, “Modeling photonic crystals with complex unit cells by Dirichlet-to-Neumann maps,” J. Comput. Math. 25, 337-349 (2007).
  27. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice,” J. Opt. Soc. Am. B 25, 1466-1473 (2008). [CrossRef]
  28. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves,” J. Opt. Soc. Am. B 26, 1442-1449 (2009). [CrossRef]
  29. R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, P. A. Robinson, and C. M. de Sterke, “Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders,” Phys. Rev. E 60, 7614-7617 (1999). [CrossRef]
  30. K. Yasumoto, H. Toyama, and T. Kushta, “Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,” IEEE Trans. Antennas Propag. 52, 2603-2611 (2004). [CrossRef]
  31. G. Bao, D. C. Dobson, and J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029-1042 (1995). [CrossRef]
  32. Y. Y. Lu and J. R. McLaughlin, “The Riccati method for the Helmholtz equation,” J. Acoust. Soc. Am. 100, 1432-1446 (1996). [CrossRef]
  33. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer-Verlag, Berlin, 1998).
  34. A. Mizutani, H. Kikuta, K. Iwata, and H. Toyota, “Guided-mode resonant grating filter with an antireflection structure surface,” J. Opt. Soc. Am. A 19, 1346-1351 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited