OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2623–2633

Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal

Ioannis Chremmos  »View Author Affiliations


JOSA A, Vol. 26, Issue 12, pp. 2623-2633 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002623


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green’s function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green’s function and the Jacobi–Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs’ spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

© 2009 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 25, 2009
Revised Manuscript: October 18, 2009
Manuscript Accepted: October 19, 2009
Published: November 19, 2009

Citation
Ioannis Chremmos, "Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal," J. Opt. Soc. Am. A 26, 2623-2633 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-12-2623

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited