OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 456–472

Globally accelerated reconstruction algorithm for diffusion tomography with continuous-wave source in an arbitrary convex shape domain

Natee Pantong, Jianzhong Su, Hua Shan, Michael V. Klibanov, and Hanli Liu  »View Author Affiliations


JOSA A, Vol. 26, Issue 3, pp. 456-472 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000456


View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new numerical imaging algorithm is presented for reconstruction of optical absorption coefficients from near-infrared light data with a continuous-wave source. As a continuation of our earlier efforts in developing a series of methods called “globally convergent reconstruction methods” [ J. Opt. Soc. Am. A 23, 2388 (2006) ], this numerical algorithm solves the inverse problem through solution of a boundary-value problem for a Volterra-type integral partial differential equation. We deal here with the particular issues in solving the inverse problems in an arbitrary convex shape domain. It is demonstrated in numerical studies that this reconstruction technique is highly efficient and stable with respect to the complex distribution of actual unknown absorption coefficients. The method is particularly useful for reconstruction from a large data set obtained from a tissue or organ of particular shape, such as the prostate. Numerical reconstructions of a simulated prostate-shaped phantom with three different settings of absorption-inclusions are presented.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(110.7050) Imaging systems : Turbid media
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Image Processing

History
Original Manuscript: July 22, 2008
Revised Manuscript: October 18, 2008
Manuscript Accepted: November 6, 2008
Published: February 4, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Natee Pantong, Jianzhong Su, Hua Shan, Michael V. Klibanov, and Hanli Liu, "Globally accelerated reconstruction algorithm for diffusion tomography with continuous-wave source in an arbitrary convex shape domain," J. Opt. Soc. Am. A 26, 456-472 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-3-456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).
  2. S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004). [CrossRef] [PubMed]
  3. C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005). [CrossRef] [PubMed]
  4. Y. Xu, X. Gu, L. Fajardo, and H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42, 3163-3169 (2003). [CrossRef] [PubMed]
  5. A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  6. A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004). [CrossRef] [PubMed]
  7. S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993). [CrossRef] [PubMed]
  8. G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000). [CrossRef] [PubMed]
  9. A. G. Yodh and D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press), 21-1-21-45 (2003).
  10. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998). [CrossRef] [PubMed]
  11. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001). [CrossRef] [PubMed]
  12. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822-824 (2001). [CrossRef]
  13. M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002). [PubMed]
  14. K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006). [CrossRef] [PubMed]
  15. W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003). [CrossRef]
  16. W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.
  17. B. Chance, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Biomedical Topical Meeting, Vol. 71 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. 450-455.
  18. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, pp. 841-853 (1997). [CrossRef] [PubMed]
  19. S. R. Arridge and M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite-element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C.Borgers and F.Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and its Applications (Springer-Verlag, 1998), pp. 45-70. [CrossRef]
  20. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999). [CrossRef] [PubMed]
  21. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275-279 (1997). [CrossRef]
  22. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusion-photon tomography,” Opt. Lett. 20, 426-428 (1995). [CrossRef] [PubMed]
  23. Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, “Numerical solution of a subsurface imaging inverse problem,” SIAM J. Appl. Math. 62, 664-683 (2001). [CrossRef]
  24. M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Brill, 2004).
  25. M. V. Klibanov and A. Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D,” Inverse Probl. 23, 123-138 (2007). [CrossRef]
  26. H. B. Keller and D. J. Perozzi, “Fast seismic ray tracing,” SIAM J. Appl. Math. 43, 981-992 (1983). [CrossRef]
  27. H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008). [CrossRef]
  28. H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).
  29. L. Beilina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. (USA) 31, 478-509 (2008). [CrossRef]
  30. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer-Verlag, 1984). [CrossRef]
  31. J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006). [CrossRef]
  32. A. N. Tikhonov and V. Ya Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).
  33. O. A. Ladyzhenskaya and N. N. Uralceva, Linear and Quasilinear Elliptic Equations (Academic, 1969).
  34. E. W. Cheney, Introduction to Approximation Theory (Chelsea, 1982).
  35. E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Wiley, 1966).
  36. M. V. Newberry, “Signal-to-noise considerations for sky-subtracted CCD data,” Publ. Astron. Soc. Pac. 163, 122 (1991). Available on website http://adsabs.harvard.edu/abs/1991PASP.103.122N (date of last access: October 8, 2008).
  37. E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport (Wiley, 1984).
  38. V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19, 558-566 (2002). [CrossRef]
  39. H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993). [CrossRef] [PubMed]
  40. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003). [PubMed]
  41. K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008). [CrossRef] [PubMed]
  42. A. L. Bukhgeim and M. V. Klibanov, “Uniqueness in the large class of multidimensional inverse problems,” Sov. Math. Dokl. 17, 244-247 (1981).
  43. M. V. Klibanov, “Inverse problems and Carleman estimates,” Inverse Probl. 8, 575-586 (1992). [CrossRef]
  44. L. C. Evans, Partial Differential Equations (American Mathematical Society, 1998).
  45. E. A. Coddington and N. Levinson, Theory of Differential Equations, (Krieger, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited