OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 517–529

Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it

R. Wang and L.-X. Guo  »View Author Affiliations


JOSA A, Vol. 26, Issue 3, pp. 517-529 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000517


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The problem of electromagnetic (EM) scattering between the time-varying lossy dielectric ocean and a moving target is always solved by using some numerical algorithm. However, the elements of the impedance matrix and the surface electric and magnetic currents of the lossy dielectric ocean must be determined and evaluated again at different moments due to the varying of the ocean with time, and the numerical algorithm will produce an enormous amount of calculation. To overcome this shortcoming, the reciprocity theorem is used to solve the coupling field between a time-varying lossy dielectric ocean and a moving conducting plate above it. Due to the advantage of the reciprocity theorem, the difficulty in computing the secondary scattered fields is reduced. The polarization currents of the ocean and the first scattered field from the conducting plate are both evaluated by using the physical optics (PO) method. The backscattered field from the ocean is evaluated by using the Kirchhoff approximation (KA) method. The characteristics of the coupling backscattered field and the Doppler spectrum are analyzed in detail for different incident conditions.

© 2009 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: September 15, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 16, 2008
Published: February 12, 2009

Citation
R. Wang and L.-X. Guo, "Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it," J. Opt. Soc. Am. A 26, 517-529 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-3-517


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. West and Z. Q. Zhao, “Electromagnetic modeling of multipath scattering from breaking water waves with rough faces,” IEEE Trans. Geosci. Remote Sens. 40, 583-592 (2002). [CrossRef]
  2. J. V. Toporkov and G. S. Brown, “Numerical simulations of scattering from time-varying randomly rough surfaces,” IEEE Trans. Geosci. Remote Sens. 38, 1616-1625 (2000). [CrossRef]
  3. L. X. Guo and Z. S. Wu, “Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface,” J. Electromagn. Waves Appl. 18, 1219-1234 (2004). [CrossRef]
  4. D. Colak, R. J. Burkholder, and E. H. Newman, “Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces,” Microwave Opt. Technol. Lett. 49, 241-247 (2007). [CrossRef]
  5. T. Chiu and K. Sarabandi, “Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface,” IEEE Trans. Antennas Propag. 47, 902-913 (1999). [CrossRef]
  6. K. Jamil and R. J. Burkholder, “Radar scattering from a rolling target floating on a time-evolving rough sea surface,” IEEE Trans. Geosci. Remote Sens. 44, 3330-3337 (2006). [CrossRef]
  7. D. Holliday, L. L. DeRaad, and G. J. St-Cyr, “Forward-backward: a new method for computing low-grazing angle scattering,” IEEE Trans. Antennas Propag. 44, 722-729 (1996). [CrossRef]
  8. P. Liu and Y. Q. Jin, “Numerical simulation of the Doppler spectrum of a flying target above dynamic oceanic surface by using the FEM-DDM method,” IEEE Trans. Antennas Propag. 53, 825-832 (2005). [CrossRef]
  9. H. Ye and Y. Q. Jin, “Fast iterative approach to difference scattering from the target above a rough surface,” IEEE Trans. Geosci. Remote Sens. 44, 108-115 (2006). [CrossRef]
  10. P. M. Rodriguez, L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, “The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces,” IEEE Trans. Antennas Propag. 47, 961-963 (1999). [CrossRef]
  11. L. X. Guo and C. Y. Kim, “Light scattering models for a spherical particle above a slightly dielectric rough surface,” Microwave Opt. Technol. Lett. 33, 142-146 (2002). [CrossRef]
  12. L. Li, J. Q. He, Z. J. Liu, and L. Carin, “MLFMA analysis of scattering from multiple targets in the presence of a half-space,” IEEE Trans. Antennas Propag. 51, 810-819 (2003). [CrossRef]
  13. J. V. Bladel, “Electromagnetic fields in the presence of rotating bodies,” in Proceedings of the IEEE (IEEE, 1976), pp. 301-318. [CrossRef]
  14. K. Sarabandi and P. F. Polatin, “Electromagnetic scattering from two adjacent objects,” IEEE Trans. Antennas Propag. 42, 510-517 (1994). [CrossRef]
  15. Y. H. Wang, L. X. Guo, and Q. Wu, “Electromagnetic scattering from two parallel 2D targets arbitrarily located in a Gaussian beam,” Chin. Phys. 15, 1755-1765 (2006). [CrossRef]
  16. J. A. Kong, Electromagnetic Wave Theory (Wiley, 2000), pp. 649-776.
  17. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, 1994).
  18. J. Chen, K. Y. Lo, H. Leung, and J. Litva, “The use of fractal for modeling EM waves scattering from rough sea surface,” IEEE Trans. Geosci. Remote Sens. 34, 966-972 (1996). [CrossRef]
  19. M. G. Wang, Theory of Geometry Diffraction (Xidian U. Press, 1994).
  20. T. Chiu and K. Sarabandi, “Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface,” IEEE Trans. Antennas Propag. 47, 902-913 (1999). [CrossRef]
  21. J. C. Chao, F. J. Rizzo, I. Elshafiey, Y. J. Liu, L. Upda, and P. A. Martin, “General formulation for light scattering by a dielectric body near a perfectly conducting surface,” J. Opt. Soc. Am. A 13, 338-344 (1996). [CrossRef]
  22. A. D. Rozenberg, D. C. Quigley, and W. K. Melville, “Laboratory study of polarized micro-wave scattering by surface waves at grazing incidence: part I-wind waves,” IEEE Trans. Geosci. Remote Sens. 33, 1037-1046 (1995). [CrossRef]
  23. J. T. Johnson, J. V. Toporkov, and G. S. Brown, “A numerical study of backscattering from time-evolving sea surfaces: comparison of hydrodynamic models,” IEEE Trans. Geosci. Remote Sens. 39, 2411-2419 (2001). [CrossRef]
  24. J. V. Toporkov and G. S. Brown, “Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis,” IEEE Trans. Antennas Propag. 50, 417-425 (2002). [CrossRef]
  25. L. X. Guo, Y. H. Wang, and Z. S. Wu, “Study on the electromagnetic scattering and Doppler spectra from two-scale time-varying fractal rough sea surface,” Acta Phys. Sin. 54, 96-101 (2005).
  26. F. Bass, I. Fuks, A. Kalmykov, I. Ostrovsky, and A. Rosenberg, “Very high frequency radiowave scattering by a disturbed sea surface,” IEEE Trans. Antennas Propag. 16, 554-568 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: JPG (24 KB)     
» Media 2: JPG (23 KB)     
» Media 3: JPG (29 KB)     
» Media 4: JPG (36 KB)     
» Media 5: JPG (25 KB)     
» Media 6: JPG (25 KB)     
» Media 7: JPG (26 KB)     
» Media 8: JPG (28 KB)     
» Media 9: JPG (24 KB)     
» Media 10: JPG (25 KB)     
» Media 11: JPG (21 KB)     
» Media 12: JPG (25 KB)     
» Media 13: JPG (26 KB)     
» Media 14: JPG (28 KB)     
» Media 15: JPG (25 KB)     
» Media 16: JPG (27 KB)     
» Media 17: JPG (33 KB)     
» Media 18: JPG (36 KB)     
» Media 19: JPG (30 KB)     
» Media 20: JPG (35 KB)     
» Media 21: JPG (18 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited