OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1638–1653

Linear analysis of thermal blooming compensation instabilities in laser propagation

Jeffrey D. Barchers  »View Author Affiliations

JOSA A, Vol. 26, Issue 7, pp. 1638-1653 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal blooming compensation instabilities are examined. The linearized system of thermal blooming compensation (TBC) equations is studied to develop parameters that characterize the stability of phase-only and full-wave (amplitude and phase) compensation for the effects of thermal blooming. The stabilizing effects of microscale wind shear are included in the analysis to provide a mechanism to stabilize the TBC equations. Stability is equated to existence of bounded solutions of the linear TBC equations, and appropriate dimensionless parameters are developed that ensure existence and uniqueness of bounded solutions to the TBC equations. Parameters characterizing stability are expressed in forms analogous to conventional scaling laws.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 16, 2009
Manuscript Accepted: April 22, 2009
Published: June 22, 2009

Jeffrey D. Barchers, "Linear analysis of thermal blooming compensation instabilities in laser propagation," J. Opt. Soc. Am. A 26, 1638-1653 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Bradley and J. Herrmann, “Phase compensation for thermal blooming,” Appl. Opt. 13, 331-334 (1974). [CrossRef] [PubMed]
  2. D. G. Fouche, C. Higgs, and C. F. Pearson, “Scaled atmospheric blooming experiments (SABLE),” Lincoln Lab. J. 5, 273-292 (1992).
  3. R. Holmes, R. Myers, and C. Duzy, “A linearized theory of transient laser heating in fluids,” Phys. Rev. A 44, 6862-6876 (1991). [CrossRef] [PubMed]
  4. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141-143 (1991). [CrossRef]
  5. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide star,” Nature (London) 353, 144-146 (1991). [CrossRef]
  6. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971). 1971 OSA Spring Meeting Abstract: http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-61-5-648.
  7. D. L. Fried, “Branch cuts in the phase function,” Appl. Opt. 31, 144-146 (1992). [CrossRef]
  8. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759-2768 (1998). [CrossRef]
  9. D. L. Fried, “Adaptive optics wave function reconstruction and phase unwrapping when branch points are present,” Opt. Commun. 200, 43-72 (2002). [CrossRef]
  10. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt. 41, 1012-1021 (2002). [CrossRef] [PubMed]
  11. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of a shearing interferometer in strong scintillation,” Appl. Opt. 41, 3674-3684 (2002). [CrossRef] [PubMed]
  12. J. D. Barchers and T. A. Rhoadarmer, “Evaluation of phase shifting approaches for a point diffraction interferometer using the mutual coherence function,” Appl. Opt. 41, 7499-7509 (2002). [CrossRef]
  13. T. J. Karr, “Thermal blooming compensation instabilities,” J. Opt. Soc. Am. A 6, 1038-1048 (1989). [CrossRef]
  14. D. L. Fried and R. K.-H. Szeto, “Wind-shear induced stabilization of PCI,” J. Opt. Soc. Am. A 15, 1212-1226 (1998). [CrossRef]
  15. R. A. Gonsalver, “Compensation of scintillation with a phase-only adaptive optic,” Opt. Lett. 22, 588-590 (1997). [CrossRef]
  16. M. C. Roggemann and D. J. Lee. “A deformable mirror concept for correcting scintillation effects in laser beam projection through the atmosphere,” Appl. Opt. 37, 4577-4485 (1998). [CrossRef]
  17. J. D. Barchers and B. L. Ellerbroek, “Improved compensation of turbulence induced amplitude and phase distortions by means of multiple near field phase adjustments,” J. Opt. Soc. Am. A 18, 399-411 (2001). [CrossRef]
  18. J. D. Barchers “Evaluation of the impact of finite resolution effects on scintillation compensation using two deformable mirrors,” J. Opt. Soc. Am. A 18, 3098-3109 (2001). [CrossRef]
  19. J. D. Barchers “Application of the parallel generalized projection algorithm to the control of two finite resolution deformable mirrors for scintillation compensation,” J. Opt. Soc. Am. A 19, 54-63 (2002). [CrossRef]
  20. J. D. Barchers, “Closed loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations,” J. Opt. Soc. Am. A 19, 926-945 (2002). [CrossRef]
  21. P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).
  22. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence (Springer-Verlag, 1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited